Seismology based strong ground motion attenuation relationship for national zoning map

TAO Zhengru

Institute of Engineering Mechanics, China Earthquake Administration

2011.11.25-11.30, HIT-Harbin

Background

- · Empirical method
- · For regions with enough data (e.g. western US and Japan)
- For most countries or regions?
- More and more strong motion observation instruments are installed...
- SpaceTime

Background

- In China, strong ground motion records are not enough now.
- Mapping method (Hu, 1980s): This method assumes that, for region A of enough acceleration observation data and a region B of few such data, earthquake pairs (M_A , R_A ; M_B , R_B) exist in the intensity attenuation curves $I_A(M_A, R_A)$ of region A and $I_B(M_B, R_B)$ of region B, so that they give the same intensity I and ground motion Y.

Methodology

Assuming the accelerations, on the far-field and an elas ic half space, are band-limited, finite-duration, white Gaussian noise, and based on Brune ω^2 model, he source Fourier spectra $FA(M_0, f, R)$ on a site can be described as

$$FA(M_0, f, R) = C \cdot S(M_0, f) \cdot G(R) \cdot D(R, f) \cdot A(f) \cdot P(f) \cdot I(f)$$

where, *C* is proportion factor; $S(M_0, f)$ is source spectrum for a specified seismic moment; G(R) is geometric spreading function; D(R, f) is anelastic attenuation function; A(f) is the amplification factor of near surface amplitude; P(f) is a high-cut filter that rapidly reduces amplitudes at high frequencies; I(f) is spectrum shape parameter, used to shape the spectrum to correspond to the particular ground-motion measure of interest.

Following Hanks (1979), we estimate the a_{ms} using Parseval's theorem. The estimation is valid for a time window equal to the faulting duration T_d beginning with the direct shear arrival; in Hanks (1979), $T_d = 1/t_o$. In terms of spectral parameters, Ω_0 and f_o , the result is $a_{ms} = \left(\frac{m_0}{T_d}\right)^{y_s}$

$$m_0 = 2 \int_{f_0}^{f_{max}} |FA(f)|^2 df \approx 2 \int_{f_0}^{f_{max}} |\Omega_0(2\pi f_0)^2 \times e^{-\frac{\pi i \pi}{q_0}} |^2 df$$

According to the relation between Fourier spectrum and power spectrum and the definition of spectral moment, the latter can be calculated by the following numerical integration,

 $m_k = \int_{-\infty}^{\infty} \left(2\pi f\right)^k \left|FA(f)\right|^2 df$

The peak factor γ_m which describes the ratio of peak to rms motion, is calculated by the following numerical integration.

$$\begin{split} \gamma_{m} &= 2 \int_{0}^{\infty} \left\{ 1 - \left[1 - \xi \exp\left(- z^{2} \right) \right]^{N_{r}} \right\} dz \\ \xi &= \frac{N_{z}}{N_{e}} = \frac{m_{2}}{(m_{0}m_{4})^{1/2}} \qquad N_{z,e} = 2 f_{z,e} T \qquad f_{z} = \frac{1}{2\pi} (m_{2}/m_{0})^{1/2} \\ f_{e} &= \frac{1}{2\pi} (m_{4}/m_{2})^{1/2} \end{split}$$

$$\begin{aligned} \mathsf{PGA=} \mathbf{\gamma}_{\mathsf{m}} \star \mathbf{a}_{\mathsf{rms}} \end{split}$$

Inv	Inversion ranges							
	Δσ	Qo	η					
	40~100 bars	100~300	0.6~1					
١n	Inversion results							
	45.17 bars	124.91	0.61					
				_				
				6				

$residual = \frac{1}{N} \sum_{i=1}^{N} \log_{10}(\frac{observed value}{predicted value})$						
PGA relations	Mw=5	Mw=6	Mw=7			
Fukushima (1990)	-0 2970	-0.0613	0.0887			
Kanno (2006)	-0.4168	-0.3503	-0.3591			
Si(2000), D=10	-0 2003	-0.1698	-0.2407			
Si(2000), D=20	-0 2393	-0.2088	-0.2797			
Si(2000), D=30	-0 2783	-0.2478	-0.3187			
This study	-0 5093	-0.3894	-0.2520			
			21			

	Δσ	Q _o	η
	40~200 bars	90~400	0.15~0.8
Inve	rsion results		_
Inve	rsion results Δσ	Q _o	η

٦

Γ

$residual = \frac{1}{N} \sum_{i=1}^{N} \log_{10}(\frac{observed value}{predicted value})$							
Relations	Mw =5	Mw =6	Mw =7				
Xiang, et al. (1992)	-0.1524	-0 0895	0.1381				
Cui, et al. (2006)	0 3242	0.1188	0 2376				
Vec. et al. (2000)	-0 0907	-0 2262	-0.1191				
ru, et al. (2006)	0.1957	0 0306	0 0524				
lei et al (2007)	0 2543	-0 0437	0.1091				
Lei, et al. (2007)	0.4792	0.1359	0 2108				
	0 2997	0 0083	0.1130				
Lei, et al. (2007)	0 3395	0 0646	0.1222				
This study	0.2092	0.1053	-0.1217				
			31				

The end Thanks