Seismology based strong ground motion attenuation relationship for national zoning map

TAO Zhengru

Institute of Engineering Mechanics
China Earthquake Administration

Background

- Empirical method
- For regions with enough data (e.g. western US and Japan)
- For most countries or regions?
- More and more strong motion observation instruments are installed...
- Space
- Time

How to establish relationships for regions with few or without strong ground motion records?

National strong motion observation network system (Li et al., 2008)

Background

- In China, strong ground motion records are not enough now.
- Mapping method (Hu, 1980s):

This method assumes that, for region A of enough acceleration observation data and a region B of few such data, earthquake pairs ($M_{A}, R_{A} ; M_{B}, R_{B}$) exist in the intensity attenuation curves $I_{A}\left(M_{A}, R_{A}\right)$ of region A and $I_{B}\left(M_{B}, R_{B}\right)$ of region B, so that they give the same intensity I and ground motion Y.

Methodology

Assuming the accelerations, on the far-field and an elas ic half space, are band-limited, finite-duration, white Gaussian noise, and based on Brune ω^{2} model, he source Fourier spectra $F A\left(M_{0}, f, R\right)$ on a site can be described as

$$
F A\left(M_{0}, f, R\right)=C \cdot S\left(M_{0}, f\right) \cdot G(R) \cdot D(R, f) \cdot A(f) \cdot P(f) \cdot I(f)
$$

where, C is proportion factor; $S\left(M_{0}, f\right)$ is source spectrum for a specified seismic moment; $G(R)$ is geometric spreading function; $D(R, f)$ is anelastic attenuation function; $A(f)$ is the amplification factor of near surface amplitude; $P(f)$ is a high-cut filter that rapidly reduces amplitudes at high frequencies; $I(f)$ is spectrum shape parameter, used to shape the spectrum to correspond to the particular ground-motion measure of interest.

Following Hanks (1979), we estimate the arms using Parseval's theorem. The estimation is valid for a time window equal to the faulting duration T_{d} beginning with the direct shear arrival; in Hanks (1979), $\mathrm{T}_{\mathrm{d}}=1 / \mathrm{f}_{\mathrm{o}}$. In terms of spectral parameters, Ω_{0} and f_{0}, the result is

$$
\begin{gathered}
a_{m s}=\left(\frac{m_{0}}{T_{d}}\right)^{1 / 2} \\
m_{0}=2 \int_{f_{0}}^{f_{\text {max }}}|F A(f)|^{2} d f \approx 2 \int_{f_{0}}\left|\Omega_{0}\left(2 \pi f_{0}\right)^{2} \times e^{-\frac{\pi f R}{Q \beta}}\right|^{2} d f
\end{gathered}
$$

According to the relation between Fourier spectrum and power spectrum and the definition of spectral moment, the latter can be calculated by the following numerical integration
$m_{k}=\int_{-\infty}^{\infty}(2 \pi f)^{k}|F A(f)|^{2} d f$

The peak factor γ_{m}, which describes the ratio of peak to rms motion, is calculated by the following numerical integration,

$$
\begin{gathered}
\gamma_{m}=2 \int_{0}^{\infty}\left\{1-\left[1-\xi \exp \left(-z^{2}\right)\right]^{N_{e}}\right\} d z \\
\xi=\frac{N_{z}}{N_{e}}=\frac{m_{2}}{\left(m_{0} m_{4}\right)^{1 / 2}} \quad N_{z, e}=2 f_{z, e} T \\
f_{z}=\frac{1}{2 \pi}\left(m_{2} / m_{0}\right)^{1 / 2} \\
f_{e}=\frac{1}{2 \pi}\left(m_{4} / m_{2}\right)^{1 / 2}
\end{gathered}
$$

Inversion ranges

$\Delta \sigma$	Qo	η
$40 \sim 100$ bars	$100 \sim 300$	$0.6 \sim 1$

Inversion results

$\Delta \sigma$	Qo	η
45.17 bars	124.91	0.61

PGA attenuation relations

Strong motion data from K-NET

- 4256 strong motion data ($\mathrm{Mw} \geq 4.5$ and focal depth $\leq 30 \mathrm{~km}$)
- 88 K-NET bedrock stations $\left(T_{G}<0.2 s\right)$

Empirical relations

- Tatsuo Kanno, et al., (2006)
$\log (P G A)=056 M_{w}-00031 X-\log \left(X+00055 \cdot 10^{0.5 M_{w}}\right)+026+037$
- Hongjun Si , et al., (2000)
$\log (P G A)=058 M_{w}+00039 D+012+028-\log X_{e q}-0003 X_{e q}$
- Yoshimitsu Fukushima, et al., (1990)
$\log (P G A)=0.41 M_{s}-\log _{10}\left(R+0.032 \cdot 10^{0.41 M_{s}}\right)-0.0034 R+1.30$

residual $=\frac{1}{N} \sum_{i=1}^{N} \log _{10}\left(\frac{\text { observed }}{\text { predicted } \quad \text { value }}\right)$

PGA relations	$\mathrm{Mw}=5$	$\mathrm{Mw}=6$	$\mathrm{Mw}=7$
Fukushima (1990)	-02970	-0.0613	0.0887
Kanno (2006)	-0.4168	-0.3503	-0.3591
$\mathrm{Si}(2000), \mathrm{D}=10$	-02003	-0.1698	-0.2407
$\mathrm{Si}(2000), \mathrm{D}=20$	-02393	-0.2088	-0.2797
$\mathrm{Si}(2000), \mathrm{D}=30$	-02783	-0.2478	-0.3187
This study	-05093	-0.3894	-0.2520

Case of Southwestern China

Sichuan Province
2001-2007
29 seismic stations
48 earthquakes
147 records
Yunnan Province
2001-2007
26 seismic stations
162 earthquakes
863 records

Inversion ranges (Ye, 2001; Su, 2009)

$\Delta \sigma$	Q_{0}	η
$40 \sim 200$ bars	$90 \sim 400$	$0.15 \sim 0.8$

Inversion results

$\Delta \sigma$	Q_{0}	η
105.14 bars	92.41	0.21

PGA attenuation relations

Strong ground motion data

- 66 strong motion data ($\mathrm{Mw} \geq 4.5$ and $\mathrm{D} \leq 30 \mathrm{~km}$)
- 36 strong motion station (bedrock)

Empirical relations

- Yanxiang YU and Suyun WANG (Western China, 2006) $\log _{0}($ PGA $)=2.206 M_{s}+0.532 M_{s}-1.954 \log _{0}\left(R+2.018 e^{0.06 M_{s}}\right)$ $\log _{10}(P G A)=1010 M_{s}+0.501 M_{s}-1.441 \log _{0}\left(R+0.340 e^{0.521 M_{s}}\right)$
- Jiancheng LEI, et al. (Sichuan basin, 2007) $\log _{10}(P G A)=-18244+1.5408 M_{s}-0.0845 M_{s}^{2}-16392 \quad \log _{0}\left(R+0.8691 e^{0.38} M_{s}\right)$ $\log _{0}($ PGA $)=-2.1376+1.4860 M_{s}-0.0812 M_{s}^{2}-1.3846 \quad \log _{10}\left(R+0.4022 \quad e^{0.56 K_{s}}\right)$
- Jiancheng LEI, et al. (southwestern region, 2007)
$\log _{10}($ PGA $)=-0.3349+13807 M_{s}-0.0665 M_{s}^{2}-2.1920 \quad \log _{0}\left(R+2.5292 e^{0.333 M_{s}}\right)$ $\log _{10}($ PGA $)=-1.5206+1.4539 M_{s}-0.0715 M_{s}^{2}-1.8499 \quad \log { }_{0}\left(R+1.0617 \quad e^{0.335 M_{s}}\right)$
- Jianwen CUI, et a . (Yunnan 2006)
$\log _{10}(P G A)=3.5549+0.2881 M_{s}+\left(-2.7317+0.0889 M_{s}\right) \cdot \log _{10}(R+13)$
- Jianguang XIANG and Dong GAO (Yunnan, 1992) $P G A=129107 e^{0.5275 \mu_{s}}(R+15)^{-1.5785}$

$\text { residual }=\frac{1}{N} \sum_{i=1}^{N} \log _{10}\left(\frac{\text { observed }}{\text { predicted } \quad \text { value }}\right)$			
Relations	Mw =5	Mw =6	Mw =7
Xiang, et al. (1992)	-0.1524	-0 0895	0.1381
Cui, et al. (2006)	03242	0.1188	02376
Yu, et al. (2006)	-0 0907	-0 2262	-0.1191
	0.1957	00306	00524
Lei, et al. (2007)	02543	-0 0437	0.1091
	0.4792	0.1359	02108
Lei, et al. (2007)	02997	00083	0.1130
	03395	00646	0.1222
This study	0.2092	0.1053	-0.1217

