Chinese-Korean-Japanese Cooperative Program Seismic Hazard Assessment for the Next Generation Map

Seismic hazard assessment in low seismicity provinc

Tang Aiping tangap@hit.edu.cn

School of Civil Engineering, Harbin Institute of Technology

The state-and -art of Seismic hazard assessment in low seismicity province in China

A new seismic hazard assessment method in low seismicity province

• One Example in Yunnan Province

Conclusions

1. The state-of the art of Seismic hazard assessment in low seismicity province in China

>General methods

Historical earthquake method—Paleoearhquake or historical earthquake

Tectonic analogism method---high seismic hazard data

(Deterministic Seismic Hazard Analysis (DSHA), Probabilistic Seismic Hazard Analysis (PSHA))

- >Ongoing methods
- Containing strong earthquake observation infoincluding earthquake source mechanism, history sequence or serial
- Continental dynamic—deformation and mechanism

2. A new seismic hazard assessment method in low seismicity province-based on deformation and energy accumulation and releasing

Continental Dynamic mechanism

GPS deformation and velocity field, geotectonic environment and paleoearthquake

3Dimension geological info

- Site effection
- Fault types, dynamic and segment
- Normal, reserve and strike fault, Tectonic dynamic and earthquake

Based on geophysics and geochemical

comprehensive info-gravity, geo-resistance and geomagnetism, abnormal geochemical field- inert element and hydrargyrum(Hg)

Rock deformation

Rock elastic-plastics deformation, energy cumulation

Formulation of Model

Technique Diagram

3. One example

Seismic provinces

序	地震带(区)名称	所处	主要断裂带	№6级	最大地	地震记载
뮥		省份		地震次数	震震级	起始时间
1	安宁河-则木河带	四川	安宁河带、则木河带	8	$7\frac{1}{2}$	624年
2	小江带	云南	小江带	13	8	1500年
3	马边-大关带	四川	马边-盐津断裂带	8	7.1	1216年
		云南				
4	通海-石屏带	云南	曲江带、石屏建水带	16	7.8	1420年
5	南华-楚雄带	云南	南华-楚雄带	3	$6\frac{3}{4}$	1511年
6	半田"护观区	四川	木里弧形带、盐源弧 形带	5	6.7	1467年
0	小王•鱼郧匕	云南				
7	中甸-大理带	云南	乔后 -龙蟠 带、红河带	18	7.0	886年
8	腾冲-龙陵区	云南	腾冲带、龙陵-瑞丽带、	21	7.4	1478年
			大盈江带等			
9	澜沧-耿马带	云南	旱母坝-邦多带、澜沧-	16	7.6	1935年
			勐遮带			
10	思茅-普洱区	云南	无量山带	11	6.8	1884年

Continental dynamic

seismic source mechanism –P axial

a b c

Two preponderant directions—NNE-NE and NW-NNW—means two tectonic stress field

Geophysics

大范围为相对低速区(RED),NNW展布的长条状地壳底部明显的低速区。地震多发生于高速与低速过渡带.

Velocity structure of lithosphere and upper mantle

Geo-resistance

Q value of end-body

Q值偏低且横向不均匀(transverse asymmetry)。构造活动、高热以及低速区域的Q值低,1900年以来,云南6级以上地震多发生在低Q值区。但龙陵一澜沧一耿马带例外,Q值高,大震频繁与新生破裂带发育有关

Fault characteristics

CACTIVITY Characteristics

- 1)50-38MaB.P. relative inactive;
- 2)38 -25MaB left-lateral strike moving; the maximum displacement is about 0.8 ~1.6km
- 3)25 5MaB.P. quietude;
- 4)5MaB. Right-lateral strike, active

Segmental characteristics

- 1) the south-eastern part is more active in recent 100 years
- 2) smaller earthquakes occurred in north-western part in recent decades only a MS=7.0 took place in 1925, but there were more 8 earthquakes (MS>7.0) in the south-eastern parts in recent 100 years
- 3) slipping rate
 - North-western: 3.5mm/a(horizontal), 1.6mm/a(vertical), Active in Q4
- middle(creep slip) : 3.1mm/a, Active in Q3
- south-eastern: :2.9mm/a, active in Q3
- 4) sedimentary thickness: sedimentary center moves towards the north-western part

edimentary in Tertiary and Quaternary period—move toward north-west

Sedimentary thickness of Tertiary (inactive and Quaternary (active)

Paleo-seismology

Ms > 5.0 earthquake map From 624 to 1900 (left) From 1901 to 2008 (right)

The forecasting result of Seismic hazard assessment

This fault has a obvious segmental characteristics, although the entire fault has a similar tectonic background, but many differences including slipping rate, activity period and stress direction and levels, etc.

There will be a PGA= 0.1g earthquake in next 50 years in this low seismicity province based on the above comprehensive info including regional deformation developing and energy accumulation and releasing, etc.

4. Conclusions

 Comprehensive info is the most important foundation for seismic hazard assessment in low seismicity province

 Building fault system database --Including regional tectonic geology, continental dynamic, active and inactive faults and history earthquake database

The End

Successful Cooperation and Enjoying the everyday in Harbin

Thanks all of you!