Seismic Attenuation in the Korean Peninsula

Seismic Parameters for Prediction of Strong Ground Motions in Korea

Tae-Seob Kang¹, Nam-Dae Jo² & Chang-Eob Baag³

¹Department of Earth Environmental Sciences, Pukyong National University, Korea
²Daewoo International Corporation, Korea
³School of Earth and Environmental Sciences, Seoul National University, Korea
Contents

1. Basic Definition on Earthquake Ground Motions

2. Efficient Procedure for Estimation of Seismic Parameters for Ground Motions
1. Basic Definition on Earthquake

Ground Motions
“By Any Other Name”

- Attenuation laws (Europe)
- Attenuation relations (U.S. Engineers)
- Attenuation relationships (U.S. Engineers)
- Attenuation equations
- Ground motion relations (U.S. Seismologists)
- Ground motion prediction relations
- Ground motion prediction equations
- Ground motion estimation equations
Definition

“An attenuation law is a mathematical equation or engineering model that relates a strong-motion parameter to one or more parameters of the earthquake source, wave propagation path, and local site conditions”
Methods of Development

- **Empirical methods**
 - Derived from strong-motion recordings

- **Hybrid empirical methods**
 - Derived by modifying empirical attenuation laws in one region to use in another region based on seismological transfer functions usually derived using stochastic methods (see below)

- **Stochastic methods**
 - Derived from stochastic ground-motion simulations and simple seismological models

- **Theoretical methods**
 - Derived from kinematic and dynamic ground-motion simulations and rigorous seismological models
Basic Functional Form

\[\log Y = c_1 + c_2 M - c_3 \log R - c_4 R + \varepsilon_a + \varepsilon_e \]

where,
- \(\log Y \) = log of strong-motion parameter
- \(M \) = earthquake magnitude or \(f(M) \)
- \(R \) = source-to-site distance or \(f(R, M) \)
- \(\varepsilon_a \) = aleatory uncertainty
- \(\varepsilon_e \) = epistemic uncertainty
- \(c_i \) = model coefficients
Common Parameters

- Ground-motion measure
- Earthquake magnitude
- Source-to-site distance
- Finite faulting effects
- Local site conditions
- Stress drop
- Hanging-wall effects
- Tectonic environment
2. Efficient Procedure for Estimation of Seismic Parameters for Ground Motions
Seismic parameters for computation of ground motions

- **Source parameters**
 - Seismic moment (M_0), Corner frequency (f_c), Stress drop ($\Delta \sigma$)

- **Propagation constants**
 - Quality factor $Q (\kappa_q)$, site-dependent κ_s, Geometrical spreading $R^{-\gamma}$

\[
A(f, R) \propto e^{-\pi \kappa f} \cdot R^{-\gamma}
\]

\[
\kappa = \kappa_q R + \kappa_s
\]

κ is a site-specific parameter, κ_q is a regional parameter ($\sim Q$)
κ-values from acceleration spectrum

Fourier Amplitude Spectrum of Acceleration
1999/06/02 \textbf{KRA station} $R = 58.0$ km

\begin{align*}
\log(\text{FAS}) &= -0.126045 f - 0.132014 \\
\kappa^{\text{KRA}}_{R=58\,\text{km}} &= 0.0401
\end{align*}
Linear curve fitting for $\kappa = \kappa_s + \kappa_q R$

κ-value; May be seriously influenced by the site effect

→ Need to propose a new procedure for κ_s and κ_q
Computation of site-dependent κ

1st STEP: computation of site independent value κ_q (or Q)

Using coda normalization method (Frankel, 1990) or others

$t_c = 85.7$ sec ($2T_s^{120}$ for $R=120$ km)

T_s^{58}

Origin time

S window

Coda window

1999/06/02 \textbf{KRA station} $R = 58$ km
Result of inversion for Q and γ

$\gamma = 0.7649$

$Q = 2022.58$

$\leftrightarrow \kappa_q = 0.0001413$

; slope in $\kappa-R$ relation is obtained
2nd STEP: computation of κ_s for each site using given κ_q value

<table>
<thead>
<tr>
<th>Station</th>
<th>WSA</th>
<th>WSB</th>
<th>WSC</th>
<th>WSN</th>
<th>KRA</th>
<th>KRB</th>
<th>KOR</th>
<th>UJA</th>
<th>TAG</th>
<th>GKP</th>
<th>PUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ_s</td>
<td>0.02647</td>
<td>0.01337</td>
<td>0.01732</td>
<td>0.02885</td>
<td>0.03300</td>
<td>0.01513</td>
<td>0.02577</td>
<td>0.03588</td>
<td>0.002665</td>
<td>-0.01087</td>
<td>0.01302</td>
</tr>
</tbody>
</table>
Site-dependent κ_5 values

LATITUDE

LONGITUDE

37.5N
37N
36.5N
36N
35.5N
35N
127.5E
128E
128.5E
129E
129.5E
130E

GKP
TAG
0.002665
-0.01087

WSC
WSA
KRA
KRB
PUS
UJA
KOR
WSN

0.03588
0.01732
-0.01087
0.002665
0.02647
0.01338
0.02885
0.01513
0.01302
0.02577
Brune’s stress drop

Stress drop ($\Delta\sigma$) is obtained from
- Low frequency spectral value (Ω_0)
- Corner frequency (f_c)
1999 Gyeongju Earthquakes, Korea

Three small-to-medium-sized earthquakes at almost the same location
Computed source spectrum (smoothed)
Computed source parameters

Low-frequency spectral level

- Ω_0 (cm · sec)
- f_c (Hz)

Stress drop

- Weighted average
 - 78-bar

Stress drop values

- $M_w=3.1$
 - Apr. 24
- $M_w=3.4$
 - Sep. 12
- $M_w=3.8$
 - Jun. 2
Conclusion

Proposed methods and procedures for estimation of site-dependent ground motions can be efficiently used in the low and moderate seismicity regions.