The 1st Annual Meeting of the Project of Seismic Hazard Assessment for the Next Generation Map: Strategic Japanese-Chinese-Korean Cooperative Program

Seismic Attenuation in the Korean Peninsula Seismic Parameters for Prediction of Strong Ground Motions in Korea

Tae-Seob Kang¹, Nam-Dae Jo² & Chang-Eob Baag³

¹Department of Earth Environmental Sciences, Pukyong National University, Korea ²Daewoo International Corporation, Korea ³School of Earth and Environmental Sciences, Seoul National University, Korea

27 November 2011, Harbin Institute of Technology

Contents

- 1. Basic Definition on Earthquake Ground Motions
- 2. Efficient Procedure for Estimation of Seismic Parameters for Ground Motions

1. Basic Definition on Earthquake

Ground Motions

"By Any Other Name"

- Attenuation laws (Europe)
- Attenuation relations (U.S. Engineers)
- Attenuation relationships (U.S. Engineers)
- Attenuation equations
- Ground motion relations (U.S. Seismologists)
- Ground motion prediction relations
- Ground motion prediction equations
- Ground motion estimation equations

Definition

"An attenuation law is a mathematical equation or engineering model that relates a strongmotion parameter to one or more parameters of the earthquake source, wave propagation path, and local site conditions"

Methods of Development

- Empirical methods
 - Derived from strong-motion recordings
- Hybrid empirical methods
 - Derived by modifying empirical attenuation laws in one region to use in another region based on seismological transfer functions usually derived using stochastic methods (see below)
- Stochastic methods
 - Derived from stochastic ground-motion simulations and simple seismological models
- Theoretical methods
 - Derived from kinematic and dynamic ground-motion simulations and rigorous seismological models

Basic Functional Form

 $\log Y = c_1 + c_2 M - c_3 \log R - c_4 R + \varepsilon_a + \varepsilon_e$

where,

- $\log Y = \log of strong-motion parameter$
- M = earthquake magnitude or f(M)
- R = source-to-site distance or f(R, M)
- ε_a = aleatory uncertainty
- ϵ_e = epistemic uncertainty
- c_i = model coefficients

Common Parameters

- Ground-motion measure
- Earthquake magnitude
- Source-to-site distance
- Finite faulting effects
- Local site conditions
- Stress drop
- Hanging-wall effects
- Tectonic environment

2. Efficient Procedure for <u>Estimation of Seismic Parameters</u> for Ground Motions

Seismic parameters for computation of ground motions

Source parameters

• Seismic moment (M_0), Corner frequency (f_c), Stress drop ($\Delta \sigma$)

- Propagation constants
 - Quality factor $Q(\kappa_q)$, site-dependent κ_s , Geometrical spreading $R^{-\gamma}$

$$A(f, R) \propto e^{-\pi\kappa f} \cdot R^{-\gamma}$$

$$\kappa = \kappa_q R + \kappa_s$$

$$\int \text{site-specific parameter} \kappa_s^5 Q \text{ and } \gamma \quad \kappa_s^2$$

$$\kappa_s^5 \chi = \kappa_s^6$$

k-values from acceleration spectrum

Linear curve fitting for $\kappa = \kappa_s + \kappa_q R$

 κ -value; May be seriously influenced by the site effect \rightarrow Need to propose a new procedure for κ_s and κ_q Computation of site-dependent κ

1st STEP: computation of site independent value κ_q (or Q)

Using coda normalization method (Frankel, 1990) or others

Result of inversion for Q and γ

 $\gamma = 0.7649$ K Q = 2022.58 $\Leftrightarrow \kappa_q = 0.0001413$ K_s K_s K

2nd STEP : computation of κ_s for each site using given κ_q value

Site-dependent κ_s values

Brune's stress drop

- **f** Stress drop ($\Delta \sigma$) is obtained from
 - Low frequency spectral value (Ω_0)
 - Corner frequency (f_c)

1999 Gyeongju Earthquakes, Korea

Three small-to-medium-sized earthquakes at almost the same location

Computed source spectrum (smoothed)

Computed source parameters

Conclusion

Proposed methods and procedures for estimation of site-dependent ground motions can be efficiently used in the low and moderate seismicity regions.