Discussion on Seismic Site Response Characteristics in Korea

October 30th, 2012

@ Seogwipo KAL Hotel, Jeju Island, Korea

Sun, Chang-Guk

Korea Institute of Geoscience and Mineral Resources

<u>Contents</u>

Site Effects and Site Classification

Seismic Site Response in Korea

Summary

Site Effects and Site Classification

Complexity of Earthquake Ground Motion

- Main Influence Effects
 - Source effects / Path effects / Site effects
- Geological Issue
- Source represented by occurred earthquake characteristics
 Rock Rath represented by attenuation relationship in rock
- > Geotechnical Issue : Site effects (sometimes included source & path)

Observational Evidence of Site Effects

- 1994 Northridge Earthquake(Santa Monica; Gao et al., 1996)
- The amplitudes at soil site are about 4 and 7 times stronger than those at rock site located apart from 650 m

Determination of Site Coefficients, F_a and F_v Based on 1989 Loma Prieta and Other Earthquakes

Current Site Classification System for Seismic Design (UBC 1997; NEHRP 1997; 2000)

		Average Soil Prop	Short-Period	Mid-Period
Soil Profile Type	Gen <mark>eriz</mark> Gescription		Z = 0.11 Z = 0 07	Z =0.11 Z = 0.07
	(6)	$V_{\rm S}$ (Vs30) (m/s)	$s = Cv/2.5 Ca F_a F_a$	$\begin{array}{ c c c c }\hline C_{v} & F_{v} & C_{v} & F_{v} \\ \hline \end{array}$
S _A (Site Class A)	Hard Rock	> 1,500	0.09 0.82 0.05 0.71	0.09 0.82 0.05 0.71
S _B (Site Class B)	Rock	760 - 1,500	0.11 1.00 0.07 1.00	0.11 1.00 0.07 1.00
S _C (Site Class C)	VeCaDense and Soft Rock	360 - 760	0.13 1.18 0.08 1.14	0.18 1.64 0.11 1.57
S _D (Site Class D)	Stiff Soil	180 - 360	0.16 1.45 0.11 1.57	0.23 2.09 0.16 2.29
S _E (Site Class E)	Soft Soil	< 180	0.22 2.00 0.17 2.43	0.37 3.36 0.23 3.29
S _F (Site Class F)		Beiti Boe (ainitia) g Site-s	pecific Evaluation	

Determination of Response Spectrum for Seismic Design

Seismic Site Response in Korea

Response Spectra from Analyses

In C and D sites, the spectral accelerations of response spectra are significantly higher than those of design spectra near resonant periods.
The resonant periods of D sites are longer than C sites.

Seismic Site Response in Korea (4/6)

Average of Response Spectra

 Maximum spectral accelerations of C and D sites are higher, respectively, than those of design spectrum for site classes D and E, near resonant period.

Ratio of Response Spectra

Site Coefficients According to Vs30

Site characterizations in Korea were performed to evaluate the seismic site response characteristics, and the following conclusions were obtained:

- ✓ Depth to bedrock → Korea << WUS Soil stiffness → Korea > WUS
- \checkmark Site period \rightarrow Korea (0.1 to 0.4 sec) << WUS (0.2 to 1.8 sec)
- Spectral acceleration in response spectra from site response analyses
 Analyses for C and D sites in Korea > Design code (near the site periods)
- ✓ Site coefficients, F_a & F_v, from site response analyses
 → F_a (1.0 to 3.0) in Korea > F_a in Design code
 → F_v (1.0 to 1.5) in Korea < F_v in Design code

