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Scenario Earthquake Shaking Maps (SESMs)

The shaking maps are evaluated for about 500 scenario
earthquakes of almost all of major active faults in Japan.

Selection of a specified scenario is essential to make a shaking map. The basic policy of the selection of a
scenario earthquake is that we choose the most probable case.

For treatment of uncertainties, we assume several cases of source model and compare the results of them to
show deviation of strong-motion evaluation due to uncertainties.
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Strong-motion evaluation method (Recipe)

Modeling of source fault
(Characterized source model)
- Outer source parameters
- Inner source parameters
- Other source parameters

Modeling of underground structure

- Deep underground structure from the crust up
to seismic bedrock

- Structure of sediments from the seismic

bedrock up to the engineering bedrock

Waveform simulation (Hybrid method)
- Finite difference method (for low frequency range)
- Stochastic Green’s function method (for high frequency range)

Waveforms on the engineering bedrock

structure from the engineering bedrock to the ground surface

{ Amplification factor based on subsurface shallow }

JMA seismic intensity on the ground surface




Complicated source model
Long-term evaluation of earthquake activities

Characterized source model
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Characterized Source Model

The complicated source model is simplified by the
characteristic source model for strong-motion prediction.

Characterized source models are composed of asperities and a
background slip area surrounding the asperities. Asperities are
the main rupture areas in the fault zone.

Source parameters required to evaluate strong-motions by
using the characterized source model are classified into three
parts.

The first part is the set of outer parameters that show the
magnitude and the fault shape of the earthquake.

The second part is the set of the parameters that describe the
degree of fault heterogeneity.

The third part is the set of the parameters to define the
characteristics of the rupture propagation.
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Determination of outer source parameters
Fault length (L) by the long-term evaluation = Outer source parameters

Active faults surveys
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Determination of dip angle
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Determination of outer source parameters

Thickness of seismogenic zone (H) is mainly determined from activities of small or
micro earthquakes
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Active faults surveys
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Modeling of underground structure
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*The deep underground structure from the crust and
plates up to seismic bedrock;

*The structure of sediments from the seismic bedrock
up to engineering bedrock (Vs=0.4km/s~0.7m/s);

*The structure of surface soils from the engineering
bedrock up to the ground surface.
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Structure model deeper than the seismic bedrock

Contour of the top depth of each velocity layer based on
the 3D velocity structure by Matsubara et al. (2008)
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Structure model for deep sedimentary layers

To improve the initial model, with a focus on
predominant periods, by comparing the H/V spectral
ratio of seismic records (for M5.5 or greater) obtained .
by the Kyoshin Network (K-NET, KiK-net) and the
H/V spectral ratio of fundamental to 4th higher-mode
Rayleigh waves obtained from velocity structure ,
models.

Comparing calculated waveforms with observed
waveforms for middle-scale earthquakes (around M5),
the validity of adjustments using H/V spectral ratios
was reviewed.
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Subsu rface shallow structure model
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Calculation of IMA seismic intensity (1,,,5)
on the ground surface

Waveforms on the Engineering

engineering bedrock geomorphologic
classification

Average S-wave
velocity up to 30m
depth (AVS30)
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bedrock for peak velocity peak velocity and I,
I I
I
Site amplification factor
¢
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surface (engineering bedrock ~ ground surface)
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Hybrid method for evaluation of strong-motion

Low frequency range

Matching filter 14 Finite Difference Method
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The technical details on the hybrid method are summarized as the
‘Recipe for strong-motion evaluation’, which are published by the
earthquake research committee of Japan.



Verification of the ‘Recipe’

For inland crustal earthquakes

- The 2000 western Tottori earthquake on October 6, 2000
(M;ya= 7.3, Mw = 6.8, Depth = 9 km)

- The 2005 west off Fukuoka earthquake on March 20, 2005
(M;ya= 7.0, Mw = 6.6, Depth = 9 km)

- Simulated strong-motion intensity distribution matched well to
observed one.

- Simulated spectral level also matched well to observed one
If the location of asperity and velocity structure model could be
set up appropriately.

Uncertainty of asperity location should be considered because it is
very difficult to know the location in advance.
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Example of SESMSs

Southeastern part of the Kego fault zone
- Fault length =27km (= M =7.2)
- Strike-slip fault
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Characterized source model

Outer source parameters = Inner source parameters
For details, see ‘Recipe’
(http://www.j-shis.bosal.go.jp/map/ISHIS2/text/news_en.html)

NW case 1 SE case 1 case 2
1.5km 27km :3-5krr=1 Outer source parameters
GL T2km Seismic moment [Nm] 147 x 10"
L roder Lkm] 32
Wmodel [km] 16
asperityl 16km Innter source parameters
Asperity 1
1b T1a Area [km’] 96 64
- Average slip [m] 1.8 2.0
Effective stress [MPa] 16 16
case 2 A .
o sperity 2
el — T2km Area [km’] — 36
Average slip [m] — 14
Effective stress [MPal — 16
agperity? _ Background region
asper ity 16km Area [km?] 416 412
2b ] Average slip [m] 0.7 0.7
T |1 Effective stress [MPa] 2.8 2.8
32km ’ Other source parameters

[J: fault plane [J: asperity +r: hypocenter Rupture velogity [km/s] 2.4
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Deep sediments structure model
Seismic bedrock (Vs=3.1 km/s) ~ engineering bedrock (Vs = 0.6 km/s)

Top of layer 2 (Vs=1.1km/s) . Top of layer 3 (Vs=1.4km/s) . Top of layer 4 (Vs=1.7km/s)
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Results-1

Peak velocity distribution on the engineering bedrock (Vs=0.6km/s)

case la rase 1h

- peak velocities at
near source fault in
cases 1la and 1b are
larger than cases 2a
and 2b

- large peak velocity
region extends to
southeastern of the
source fault in cases 1b
and 2b

(forward directivity
effect and
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Results-2
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Comparison of simulated peak velocity on the engineering bedrock
with an empirical attenuation relation by Si and Midorikawa (1999)
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 the near fault region.

- = Extremely large peak
§ velocities are simulated in
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Results-3

Examples of velocity waveforms on the engineering bedrock
(site A located just on the source fault)

Top of layer 7 (Va=3.1 km/s)

O cases 1a & 1b (1 asperity model)
large amplitudes with a short duration
O cases 2a & 2b (2 asperities model)
relatively small amplitudes with a long
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Results-4

Examples of velocity waveforms on the engineering bedrock
(site C located on a direction extending from the source fault)

Top of layer 7 (Va=3.1 km/s)
O cases 1a & 2a
small amplitudes

O cases 1b & 2b
large pulse with period of about 3s
(forward directivity effect
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Results-5

Examples of velocity waveforms on the engineering bedrock
(site E located on very thick sediments)

Top of layer 7 (Va=3.1 km/s)

O all cases
remarkable later phases with large
amplitudes

O cases 1b & 2b
relatively large peak amplitude
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Site amplification factor for I,

from engineering bedrock (\Vs=0.6km/s)
to the ground surface
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Results-6

JMA seismic intensity distribution on the ground surface

case la case 1b

- Large amplification
In basins causes very
large JMA seismic
Intensity on the ground
surface for all cases.

- Difference between
basin and mountain
regions Is more
remarkable compared
with peak velocity on
o L F o the engineering
o0 0w e e oo pedrock.
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Conclusions

Scenario Earthquake Shaking Maps can understand strong ground
motion distribution if the target earthquake occurs. The maps have an
advantage that the influences of the rupture processes of the source
fault and detail underground structure, especially the deep
sedimentary layers structure, are expressed.

Problems remain:

- It Is not enough to consider uncertainties because only one or few
cases have been carried out for each fault.

* The underground structure models should be improved much more.

- SESMs for huge subduction-zone earthquakes are also required.
-Forward directivity effect may be overestimated because simple
rupture propagation (circular rupture propagation with a constant
rupture velocity) Is assumed in the simulation.
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Thank you for your attention !
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