Active faults and seismic source identification in Taiwan

J. Bruce H. Shyu Department of Geosciences, National Taiwan University

TEM-NIED Workshop, Chungli, June 4, 2012

Most of the 1999 surface rupture appears to follow some pre-existing topographic features

(Chen et al., 2002)

What can we see on the 40-m DEM?

What can we see on the 40-m DEM?

Most of the 1999 Chi-Chi surface rupture even before the earthquake!

Where are the active structures in Taiwan?

Active structure map of Taiwan

Neotectonic "domains" of Taiwan

Pingtung Plain—a rapidly subsiding basin

Major structural systems in the Longitudinal Valley

Major structural systems in the Longitudinal Valley

Hualien •

Major structural systems in the Longitudinal Valley

Major structural systems in the Longitudinal Valley

How do we propose future seismic sources from these active structures?

Kaoping Domain

Chelungpu fault

Changhua fault

Ν CARAL Shanchiao fault (j) Taipei Domain Shanchiao fault (Km) Western Foothills Linkou Tableland Taipei Basin 0 Miocene Mio-Pliocene Mio-Pliocene Mio-Pliocene 5 Taipei B Pre-Miocene 10. basement 15+ 0 35(Km) 10 15 20 25 30 5

A rudimentary map of potential sources of large earthquakes in and around Taiwan

The area overlying Shanchiao fault includes much of the Taipei Basin

For the TEM database, we need some more information.

onic fault - summary table

viour	Fault yes/no, active/inactive pref. min. max km	
genic depth genic depth	pref, min, max km (1, 2, 3, or 4) pref, min, max km (1, 2, 3, or 4)	
	pref, min, max ° (1, 2, 3, or 4)	1
ide	N, S, W, E, or NW etc	
	Reverse etc (1, 2, 3, or 4) pref, min, max mm/yr (1, 2, 3, or 4)	
actor	0-1 (1, 2, 3, or 4)	
	pref, min, maxm	
terval	pref, min, max yr	
vement	pref, min, max yr BP	
ness	1, 2, 3, or 4	
	name	
1	name	
	date	

Compulsory Calculated Data completeness factors

A rudimentary map of potential sources of large earthquakes in and

S.L.

5

oposed Major Seismic Structure	s of Taiwa	an ^a							
	Fault		Fault Dip.	Downdip Limit.				$M_{\odot}^{\rm f} 10^{25}$	
Fault Name	Type ^b	<i>L</i> , km	deg	km	W,° km	A, ^d km ²	M_w^{e}	dyne cm	D, ^g m
		Lutae	o-Lan n Don	nain					
e fault	R	140	30	15	30.00	4200.00	7.59	302.96	2.40
ault	R	40	45	15	21.21	848.53	6.97	34.97	1.37
ult	R	40	45	15	21.21	848.53	6.97	34.97	1.37
Ridge fault	R	30	45	15	21.21	636.40	6.85	23.72	1.24
		Ta	itu 19 Dom i	n					
Valley fault_total	R/SS	160	60 GO	15	17 32	2771 28	743	172.83	2.08
Valley fault. Taitung Domain only	R/SS	96	60	15	17.32	1662.77	7.23	86.72	1.74
fault, total	R	80	45	15	21.21	1697.06	7.24	89.14	1.75
fault, emerged part only	R	40	45	15	21.21	848.53	6.97	34.97	1.37
bre fault	R	120	45	15	21.21	2545.58	7.40	154.10	2.02
		Hu	ien Dom	in					
Valley fault, Hualien Domain only	SS	90	60	15	17.32	1558.85	7.24	89.12	1.91
		Rv	ru vu Domo	n					
1	R	~180	30	35	70.00	12600.00	8.02	1335.06	3.53
teral accommodation structure	SS	50	90	15	15.00	750.00	6.91	29.10	1.29
fault system	N	50	60	15	17.32	866.03	6.93	30.51	1.17
		Ka	or ng Don g	in					
lt connecting Hengchun fault	SS/R	120	0p ng Dom a 75	15	15 53	1863 50	7 3 2	117 11	2.09
It connecting the offshore fault	B/SS	120	75	15	15.55	1863.50	7.52	101.15	1.81
chou fault only	SS/R	75	75	15	15.55	1164 69	7.11	57.06	1.61
Plain fault (Kaoning River fault)	SS	50	90	15	15.00	750.00	6.91	29.10	1.05
ront	R	>200	30	15	30.00	>6000.00	>7.73	>490.34	>2.72
		C							
ant	D	60	niayi Domali 15	15	57.06	2477 22	7.50	224 70	2.25
	7	15	00	15	15.00	225.00	638	254.79	0.68
							11 1/2		

onic fault - summary table

viour	Fault yes/no, active/inactive pref. min. max km	
genic depth genic depth	pref, min, max km (1, 2, 3, or 4) pref, min, max km (1, 2, 3, or 4) ° pref, min, max ° (1, 2, 3, or 4)	
ide	° (1, 2, 3, or 4) N, S, W, E, or NW etc Reverse etc (1, 2, 3, or 4) pref, min, max mm/yr (1, 2, 3, or 4)	
actor	0-1 (1, 2, 3, or 4) pref, min, maxm	
terval vement	pref, min, max yr pref, min, max yr BP	
eness	1, 2, 3, or 4 name	
1	name date	

Compulsory Calculated Data completeness factors

ndi	ng-bridge sit			
	Eal event=195	1AD (0.75m) 140-Ea2 event-330-500 vr BP (1	75m)	
30				
21 17	140 130	310 300		140< O1 <300 yr BF
56 73		330	530 500	330< O2 <500 yr BF
72 75 70 69			540 560_ 570_ 560_ 540	660 680 690 680

onic fault - summary table

viour	Fault yes/no, active/inactive pref. min. max km	
genic depth genic depth	pref, min, max km (1, 2, 3, or 4) pref, min, max km (1, 2, 3, or 4)	
ide	N, S, W, E, or NW etc Reverse etc (1, 2, 3, or 4)	
factor	pref, min, max mm/yr (1, 2, 3, or 4) 0-1 (1, 2, 3, or 4) pref, min, maxm	
eness	pref, min, max yr BP 1, 2, 3, or 4 name	
1	name date	

Compulsory Calculated Data completeness factors

introluce Director The only viscently of floring concern the Constal Darker

om magnitude obtain Single Event Displacement (SED) and then Recurrence Interval (RI) by: M_w = 2/3 log M_o - 10.7 (Hanks & Kanamori, 1979) M_o =μAD (Aki & Richards, 2002)

RI = Slip Rate / SED

Active structure map of Taiwan

Map of potential sources of large earthquakes in and around Taiwan

We are still working on completing the needed information

