

Outline

Overview of the earthquake early warning (EEW) system in Japan

Transmission and utilization of the EEW

Problems of the present EEW system

Problems of the present EEW system

(1) Sometimes EEW is issued after S-wave arrival

Warning times become negative within an area about 30km from the epicenter. When a large earthquake occurs, the closer to the hypocenter the greater the likelihood of damage.

(2) Underestimation of seismic intensity during a massive earthquake

In the 2011 Tohoku-Oki earthquake (M9), the EEW was issued to the area close to the hypocenter earlier than the S-wave arrival. But the EEW cannot be issued to areas further away from the hypocenter, where the observed seismic intensity is greater than 5-lower.

(3) False alarm

Earthquakes sometimes occurred simultaneously over the entire fault region, such that the EEW system became confused, and didn't always determine the hypocenter location and earthquake magnitude correctly.

Strong-motion real-time monitoring system for a specific active fault earthquake

Near-field strong ground motion data are very effective in reducing the size of the negative warning area

110 Major active fault zones, that have a high level of activity and great social and economical influence, were selected and have been evaluated as the targets of fundamental surveys and observations by HERP.

- Observation system is installed closed to a specific active fault.
- The seismograph calculates various strong-motion parameters in real-time

Development concepts

Conclusions

- The NIED has developed the real-time earthquake information system (REIS) which is able to determine hypocenter locations and earthquake magnitude within a few seconds.
- The JMA has been issuing EEW, which contain the results of REIS, to the general public since October, 2007.
- The EEW is transmitted to many kinds of devices and used for personal safety and automatic control.
- It is very important to observe strong motion in real-time using a dense network in order to improve the EEW system.