

Ground-Motion Prediction Equation (GMPE) for Taiwan

Po-Shen Lin

ľ		
	_	
		1

Disaster Prevention Technology Research Center, Sinotech Engineering Consultants, INC.

Disaster Prevention Technology Research Center (DPTRC)

- Introduction of GMPE
 - Important component of PSHA
 - From attenuation equation to GMPE
 - Steps for building GMPE
- Conclusion
- Future work

Debris Flow Landslide Hazard Seismic Hazard Steps in Probabilistic Seismic Hazard Analysis

What is GMPE

- "Was"
 - Attenuation relations

💁 🔹 Landslide Hazaı

.∘ Debris Flow

- Attenuation relationships
- Attenuation equations
- It is an equation that can be used to predict the possible ground-motion value during a future earthquake.

• Climate Change

Seismic Hazar

 Most of then are "empirical", and was developed from a set of ground-motion data with proper physical meaning

- "Attenuation Equations" is a poor term
 - They describe the INCREASE of amplitude with magnitude at a given distance
 - They describe the CHANGE of amplitude with distance for a given magnitude (usually, but not necessarily, a DECREASE of amplitude with increasing distance).

Obbits Flow Climate Change 中国社防災科技研究中心 V Landslide Hazard Seismic Hazard Ground Motion Prediction Equations

- Empirical regressions of recorded data
- Estimate ground shaking parameter (peak ground acceleration, peak velocity, spectral acceleration or velocity response) as a function of
 - (1) magnitude
 - (2) distance
 - (3) site
- May consider fault type (strike-slip, normal, reverse)

Art McGarr, 2006

Steps for building GMPE

⊃,• Debris Flow

o د Landslide Hazaro،

- Establish database
- Select form of predictive equation

• Climate Change

Seismic Hazar

- Perform regression analyses
- Evaluate uncertainty

Combination of horizontal measurements

• Climate Change

Seismic Haza

- Arithmetic mean (算數平均數)
- Both
- Geometric mean (幾何平均數)
- Largest component

Debris Flow

• Landslide Hazard

- Random
- Resultant (a=a1*cosθ+a2*sinθ)
- Vectorial addition ($a_v = \sqrt{a_1(t)^2 + a_2(t)^2}$)
- GMRotI50

Characterisation of source

, Debris Flow

• Earthquake magnitude, M

🗅 🔹 • Landslide Hazard

- $-M_L$
- $-M_{S}$
- $-m_b$
- $-M_W$
- Source mechanism
 - Strike slip
 normal faulting
 reverse

• Climate Change

Seismic Haza

- Tectonic setting
 - Crustal

 subduction

Characterisation of path

. • Debris Flow

Landslide Hazar

• Definitions of source-to-site distance

• Climate Change

Seismic Haza

- Epicentral distance $\$ hypocentral distance $\$ rupture centroid distance $\$ centre-of-energyrelease distance $\$ surface projection distance (R_{jb}) $\$ surface projection distance with focal depth $\$ rupture distance (R_{rup}) $\$ seismogenic distance $\$ average site to rupture end distance $\$ equivalent hypocentral distance (EHD)

(Abrahamson and Shedlock, 1997)

Characterisation of site

Debris Flow

د 🖸 🗤 Landslide Hazard

- From data selection
- Multiplicative factor
- Shear-wave velocity (Vs30)

• Climate Change

Seismic Hazar

Form of the predictive equation

Landslide Hazar

• Debris Flow

 $Y=f(M,R,P_i)$

• Climate Change

Seismic Haza

Y: Ground motion parameter of interest

- *M*: The magnitude of the earthquake
- *R*: Distance from the source to the particular site
- *P_i*: Other parameters (earthquake source, local site conditions, wave propagation path...)

- The majority of ground motion estimation studies use the ordinary least squares method
- Two-stage method
- Non-linear regression
- Maximum-likelihood method (mixed effects method)

N	T		1 •	111	
		0	hrie	- H'I	OV
MA.		C	0112	10.1	

11/11

Same and I A I A W L' I A						
Author	Equation	Parameter	Region	Data	Events	Records
茅聲燾 (1978)	$Y = 0.3725e^{0.876M}D^{1.836}$, $D = (R^2 + 400)^{1/2}$ (g)	R為震源距離	台灣地區	CWB震度	5	
Tsai & Bolt (1983)	$PGA = 17.5e^{0.869M}(R+0.0606e^{0.00M})^{-1.09}$ (gal)	R為震源距離, M為芮氏規模(ML)	台灣 東北部	SMART-1	6	
倪與邱 (1991)	ln(<i>PGA</i>) = 6.09 + 0.26M - 0.87ln(R+6.9) (gal)	R為震央距離, M為芮氏規模(ML)	台灣地區 (岩盤)	SMA-1	49	
Chiu and Ni (1993)	ln(<i>PGA</i>) = 4.15 + 1.41M _L -2.37ln(<i>R</i> +13.7) (gal)	R為震央距離, M為芮氏規模(ML)	花蓮地區	SMART-2		
黄正耀 (1995)	$Y = 0.0253 e^{1.5873M} (R + 0.3155 e^{0.6165M})^{-2.3027} $ (g)	R為測站至斷層破 裂面之最短距離, M為芮氏規模(ML)	台灣地區	TSMIP (7個地震)	7	526
劉坤松 (1996)	$Y = 0.0308 e^{1.20M} (R + 0.1413 e^{0.6892M})^{-1.741} $ (g)	R為震源距離, M為芮氏規模(ML)	台灣東北 部地區	TSMIP		
羅俊雄 (1996)	$Y = 0.0267 e^{1.354M} (R + 0.2138 e^{0.7499M})^{-1.0329} $ (g)	R為震源距離, M為芮氏規模(ML)	台灣地區 (岩盤)	SMA-1		
羅俊雄 (1996)	$Y = 0.0273 e^{0.1058M} (R + 0.141 e^{0.656M})^{-1.6472} $ (g)	 R為測站至斷層破 裂面之最短距離, M為芮氏規模(ML) 	台灣地區	TSMIP		
辛在勤 (1998)	$PGA = 12.44e^{1.31M_{\rm L}}r^{1.487}$ (gal)	/為震源距離, ML為芮氏規模(ML)	台灣地區	TSMIP	22	
劉坤松 (1999)	$\label{eq:heat} \begin{split} & \ln(\text{PHA}) = -1.339 \ln(r+2.12) - 0.0071r + 1.167\text{M} + \\ & 2.192 + \text{G}(1.475\ln(r) - 6.792) \\ & \ln(\text{PVA}) = -1.681 \ln(r+2.45) - 0.0036r + 1.250\text{M} + \\ & 2.210 + \text{G}(1.009\ln(r) - 4.464) \\ & \ln(\text{PHV}) = -1.377\ln(r+1.67) - 0.0023r + 1.581\text{M} - \\ & 3.070 + \text{G}(1.066\ln(r) - 4.909) \\ & \ln(\text{PVV}) = -1.415\ln(r+1.58) - 0.0012r + 1.666\text{M} - \end{split}$	「為震源距,M 為 地震矩規模	台灣地區	TSMIP	35	2187

Seismic Hazard

Campbell's form

$$a = b_1 e^{b_2 M} (R + b_4 e^{b_5 M})^{-b_3}$$

Joyner and Boore's form

$$\log_{10}(a) = b_1 + b_2 M + b_3 \log_{10} \left[(R^2 + b_5^2)^{b_4} \right]$$

Kanai's form

$$a = b_1 e^{b_2 M} (R + b_4)^{-b_3}$$

Japan Rock Site's form

$$\log_{10}(0.981a) = \left(\frac{R+b_4}{b_5}\right) \cdot (-b_1 + b_2M - b_3M^2)$$

5級 4級

3級 2級

集集大地震與 Northridge 地震及世界其他大地震比較上盤效應

李錫堤等 (1999)			台灣地區 美濃水庫	TSMIP		
Loh et al. (2000)	$Y = 0.02968e^{1.2 \text{ M}} (\text{R}+0.1464e^{0.698\text{M}})^{-1.7348}$ (g)	R為測站至斷層破 裂面之最短距離, M為(M _W)?	台灣地區	TSMIP		
羅俊雄與 溫國樑, 2000	Spectral Acceleration at 80 periods (0.029~10 sec)		台灣地區	TSMIP		
Chang et al. (2001)	$\label{eq:lnA} \begin{array}{l} \mbox{In A} = 2.8096 + 0.8993M - 0.4381 \mbox{ In } D_p - \\ (1.0954 - 0.0079 D_p) \mbox{ In } D_e \\ \mbox{In A} = 4.7151 + 0.8468M - 0.1745 \mbox{ In } D_p - 1.2972 \\ \ln D_h \end{array}$	D _e 、D _h 、D _p 分別為震 央距、震源距與震 源深度(km)	台灣地區	TSMIP	45 19	
趙曉玲 (2001)			台灣地區	TSMIP	9	3104
Wu et al. (2001)	$log10(PGA)=0.00215+0.581M-log10(r_{rup}+0.008$ 71×100.5M)-0.00414r_rup $log10(PGV)=-2.49+0.810M-log10(r_{rup}+0.00871\times$ 100.5M)-0.00268r_rup	M為地震矩規模 Mw,r _{rup} 為距斷層破 裂面距離(km)	台灣地區	TSMIP	60	1941

	Landslide Hazard ///)	Sei Sei	smic H	[aza1	単世のシ	这个计1文切
	Infrastructure	Urbar	Disas	ter		
Jean(2001)	Y = 0.00369e ^{1.75377} M (R+0.12220e ^{0.78315M}) ^{-2.05644}	震央距以及距斷層 面最短距離	台灣地區	TSMIP		
Liu and Tsai (2005)			台灣地區	TSMIP	51	7900
Jean et al. (2006)	$PGA = 0.0028e^{1.7331} \text{ M} (\text{R}+0.0999e^{0.7719\text{M}})^{-2.0639}$ $Sa03 = 0.0079e^{1.7253} \text{ M} (\text{R}+0.1199e^{0.7850\text{M}})^{-2.0489}$ $Sa10 = 0.0027e^{1.7731} \text{ M} (\text{R}+0.1154e^{0.7714\text{M}})^{-2.0419}$	堅硬地盤,M,震央 距以及距斷層面最 短距離	台灣地區	TSMIP		
<u> </u>	$\begin{split} &\ln Y_{ij} = C_1 + C_2 M_1 + C_3 (R_{ij} + C_5 10^{C_4 M_1}) + C_4 \ln(R_{ij} + C_5 10^{C_4 M_1}) & \begin{cases} BC \\ DE \end{cases} \\ &\ln Y_{ij} = C_1 + C_2 M_1 + C_3 (R_{ij} + C_5 10^{C_4 M_1}) + C_4 \ln(R_{ij} + C_5 10^{C_4 M_1}) + C_7 \ln(V_{S30j}) \\ &\ln Y_{ij} = C_1 + C_2 M_1 + C_3 (R_{ij} + C_5 10^{C_4 M_1}) + C_4 \ln(R_{ij} + C_5 10^{C_4 M_1}) + C_7 \ln(A_j) \end{split}$	地震矩規模(Mw) 震央距	台灣地區 (2006屏 東地震)	TSMIP	3 (186)	921 (5852)
Lin and Lee (2008)	Subduction zone earthquake	地震矩規模Mw 距斷層面最短距離 (Rrup)	台灣地區 (隱沒帶)	TSMIP	54	4823
Lin et al.(2011)	Crustal earthquake (hanging-wall, footwall)	地震矩規模Mw 距斷層面最短距離 (Rrup)	台灣地區 (地殼地 震)	TSMIP	52	5268
Lee et al. (2012)	Arias Intensity	地震矩規模Mw 距斷層面最短距離 (Rrup)	台灣地區	TSMIP	62	6570

• Climate Change

Analysis

Debris Flow

Reserv

Strong-motion data for GMPE – Crustal

Landslide Hazard

Debris Flow

 \bigcirc

• Climate Change

Seismic Haza

Strong-motion data for GMPE – Subduction

🔁 📀 Debris Flow

🗥 🗋 🕐 Landslide Hazard

• Climate Change

Seismic Haza

The notations

J.∘ Debris Flow

• Landslide Hazard

- $i \rightarrow event$
- $k \rightarrow station$
- $1 \rightarrow region$
- Residuals
 - Intra-event, ξ_{ik} inter-event η_i
 - Inter-station, ξ_{sk} intra-station ξ_{rik}

• Climate Change

Seismic Haza

- Inter-path, ξ_{pkl} intra-path ξ_{0ik}
- Inter-region, η_{SR_i} intra-region η_{0_i}
- Standard deviations
 - Intra-event, σ inter-event^{au}
 - Inter-station, σ_{r} intra-station σ_{r}
 - Inter-path, σ_p intra-path σ_0
 - Inter-region, τ_{SR} intra-region τ_0

Following the notation of Walling (2009)

Single-path sigma
$$\sigma_{sp} = \sqrt{\tau_0^2 + \sigma_0^2}$$

Single-site sigma $\sigma_{ss} = \sqrt{\tau^2 + \sigma_r^2}$ (single-station sigma)

standard deviation from the TSMIP data, if the ergodic

assumption is removed

	Single Site		Single Path			
	Total	Intra- event	Total	Inter- Event	Intra- Event	
	$\sigma_{ m SS}$	σ_{r}	σ_{SP}	τ_0	σ_0	
PGA	0.91σ _T	0.86σ	$0.54\sigma_{T}$	0.69τ	0.43σ	
T=0.1	$0.88\sigma_{T}$	0.81σ	$0.53\sigma_{T}$	0.69τ	0.42σ	
T=0.3	$0.90\sigma_{T}$	0.86σ	$0.60\sigma_{T}$	0.69τ	0.55σ	
T=0.5	$0.89\sigma_{T}$	0.83σ	$0.61\sigma_{T}$	0.69τ	0.57σ	
T=1.0	$0.86\sigma_{T}$	0.75σ	0.59σ _T	0.69τ	0.51σ	
T=3.0	$0.86\sigma_{\rm T}$	0.69σ	$0.60\sigma_{\rm T}$	0.69τ	0.51σ	

study

Kese

2

6

Standard Deviation	This Study	Chen & Tsai (2002)	Atkinson (2006)	Morikawa et al (2008)
Total	σ_{T}		$\sigma_{ m reg}$	δ
Inter-event	τ	$\sigma_{ m E}$		τ (no correction)
Intra-event	σ			σ (no correction)
Inter-site	σ_{s}	$\sigma_{\rm S}$		
Single site, record-to-record	$\sigma_{\rm r}$	$\sigma_{\rm r}$		
Inter-path	$\sigma_{ m P}$			
Intra-event, Single Path	σ_0			σ (applied correction)
Inter-source region	$ au_{ m SR}$			
Inter-event, Single Region	τ_0			τ (applied correction)
Single Site (total)	σ_{ss}		σ	
Single Path (total)	$\sigma_{_{SP}}$		σ_{ie}	(applied correction)

tatieslightferences

′<mark>S</mark>i

SI

 用相比及利

C

Risk

<u>rith</u>

Disaster

Seismic Haza

indies w

rDan

Flow

Infrastructure

lide

rev

3

Obbris Flow • Climate Change • Landslide Hazard Seismic Hazare Bourneer in constructing le path standard Seismic Hazare Bourneer in constructing le path standard Construction of σ_T

	This Study	Atkinson (2006)	Morikawa et al. (2008)
PGA	$0.54\sigma_{T}$	0.67σ _T	$0.46\sigma_{\mathrm{T}}$
T=0.1			
	0.53σ _T		$0.38\sigma_{T}$
T=0.3	$0.60\sigma_{\mathrm{T}}$	$0.68\sigma_{\mathrm{T}}$	$0.44\sigma_{\mathrm{T}}$
T=0.5			
	$0.61\sigma_{\rm T}$		$0.45\sigma_{T}$
T=1.0	$0.59\sigma_{T}$	$0.67\sigma_{T}$	$0.47\sigma_{\mathrm{T}}$
T=3.0			
	$0.60\sigma_{\mathrm{T}}$		$0.47\sigma_{\mathrm{T}}$

- More and more strong-motion data
- Strong ground motion parameters
 - PGA, PGV, PGD, Ia and Sa
- Including crustal earthquake and subduction zone earthquake
- Source-to-site distance
 - From epicenter distance to the closest distance to fault rupture plane
- Site parameters
 - From rock/soil to Vs30
- Hanging-wall and footwall

Future work

- For GMPE
 - More predictor variables for source, path and site

• Climate Change

Seismic Haza

- Directivity
- Nonlinear site effect

י.∘ Debris Flow

- Strong-motion difference due to various stress drop
- For Ground-motion prediction

Landslide Hazaı

- Empirical approach
- Seismological approach
 - Empirical Green's functions (EGFs)
 - Stochastic Green's functions (SGFs)
 - Hybrid Green's functions (HGFs)

Thank you for your attention.

Disaster Prevention Technology Research Center (DPTRC)