Current Status and Future Vision of TELES

Dr. Chin-Hsun YEH

Dr. Gee-Yu LIU

Presentation Outline

- **4** Introduction of TELES and SDST
- **4** Early Seismic Loss Estimation (ESLE)
- Probabilistic Seismic Risk Assessment (PSRA)
- **4** Future Vision of TELES

Seismic Disaster Simulation Technology

- **4** Given a set of seismic source parameters, SDST assess seismic hazards, damages and losses
- Seismic hazards
 - Ground shaking intensity
 - Ground failure probability due to soil liquefaction
 - Permanent ground deformation due to fault rupture, etc.

4 Damages

- Damage of buildings and bridges
- Interruption and restoration of lifeline systems
- Post-quake fires, debris, etc.

4 Losses

- Casualties
- Resource needs for rescue, medical-care and shelter
- Social impacts and economic losses, etc.

Analysis Framework of TELES

Database, Analysis Models and Application Software

Specify Seismic Source Parameters

(110)

(340)

(242)

(638)

(929)

(1922)

Liquefaction Susceptibility Category Map

Est. Liq. Prob. in Chi-Chi Earthquake

Estimated Damage of Highway Bridges

Serviceability of I-lan Water System

Key Features of TELES

- **4** Integrate GIS-based technology and provide user-friendly graphical interface
- Collect and calibrate various kinds of nationwide inventory databases
- Develop standardized and state-of-the-art methodology for hazard analysis, damage assessment, loss estimation and risk analysis
- **4** Integrate with Taiwan Rapid Earthquake Information Release System (TREIRS) of CWB to develop Early Seismic Loss Estimation (ESLE), which can be used in emergency response
- Integrate with probabilistic seismic source model to develop Probabilistic Seismic Risk Assessment (PSRA) model, which can be used in disaster reduction, risk spreading and transfer

Some Practical Applications of TELES

- **ESLE** was developed for quick estimation of disaster scale and distribution soon after strong earthquakes to assist Central Emergency Operation Center (CEOC) in dispatching rescue, medical and other resources since 2003
- **Every county/city government and associated organization use** TELES as a tool to assist in proposing seismic disaster reduction plans and urban disaster reduction systems since 2005
- **4** 2005-2008, Directorate General of Highways, MOTC adopted TELES risk assessment model to prioritize the seismic retrofit sequence of provincial highway bridges
- **ESLE** was applied in Taiwan Residential Earthquake Insurance Fund (TREIF) in 2007 and in highway bridges of DGH in 2011
- **Develop TREIF-ERA to assess premium and PML of residential earthquake insurance in 2009-2010**
- **4** Cooperate with Water Resources Agency of MOEA to study post earthquake performance of potable water systems in Taiwan, 2010-now

4 ...

Early Seismic Loss Estimation

Establishment of TSSD (Area Sources)

- **♣ Scope:** longitude 119°-123° latitude 21°-26°
- **↓** Grid size (0.1, 0.2, 0.4) according to exposure and seismicity
- **4** Focal depth 5, 15, 25, 35, 45, 55 km
- **4** Line source model
- Various earthquake magnitudes and fault directions

 $L = \exp(1.5483M_L - 6.8251)$

Establishment of TSSD (Active Faults)

- Reference the publications by Central Geological Survey
 Bureau in 2000 and 2010
- **4** 40 active faults
- **4** 557 seismic events

Early Seismic Loss Estimation

4 CWB has developed TREIRS

- Obtain point-source parameters (M, Ex, Ey, D) within 18.8±3.8 seconds
- Send earthquake alerts to all clients

LEST EXAMPLE S

- Auto-trig when receive email from CWB
- Obtain estimation results within 2 minutes and autooutput maps and tables
- Dispatch short text messages to emergency personnel and send E-mail to provide more information
- More information may be queried on the web-site http://teles.ncree.org.tw/tesle
- Assist in decision-making about starting central or county/city EOC and dispatching various kinds of resources

Some Remarks of ESLE

- **↓** It is difficult to obtain accurate source parameters right after strong earthquakes
 - Immediately after earthquake, only point-source parameters (M, Ex, Ey, D) are obtained from TREIRS. It takes time to obtain fault-plane solutions
 - Fault rupture direction and length are essential to have accurate estimates, especially for large earthquakes
 - Applications of ground-motion predication model and/or interpolation of PGA at real-time stations are not good enough
- **NCREE's approach in ESLE**
 - Selects the optimal solutions from pre-calculated database by matching the simulated PGA with the real-time observed PGA
 - Adjust magnitude and/or depth if appropriate
- **Advantages**
 - Error tolerance of source parameters
 - Provide opportunities to verify analysis models and the associated parameter values after earthquakes
 - Provide quantitative information to initiate CEOC and enhance effectiveness of emergency response

ESLE vs. Observed Results

Date (UT)	Mag.	Depth	X	Y	Bldg. Dmg		Casualty		Ins. Loss		Note
					Obs.	Est.	Obs.	Est,	Obs.	Est.	Note
2006/10/9	6.4	47	120.01E	20.75N	0	0	0	0	0.0	0.0	
2006/12/26	6.7	22	120.56E	21.89N	0	0	0	0	0.0	0.0	
2006/12/26	<u>6.3</u>	21	120.51E	22.40N	3	72	2	4	0	20.0	屏東佳冬外海1公里
2007/1/25	6.1	5	121.91E	22.86N	0	0	0	0	0.0	0.0	台東成功外海61公里
2007/9/6	6.6	27	122.43E	24.20N	0	0	0	0	0.0	0.0	宜蘭南澳外海69公里
2008/6/1	6.8	46	121.77E	19.93N	0	0	0	0	0.0	0.0	
2008/6/1	6.0	99	121.76E	24.95N	0	0	0	0	0.0	0.0	
2009/7/13	6.2	9	122.17E	24.07N	0	0	0	0	0.0	0.0	花蓮秀林外海51公里
2009/8/17	6.4	11	123.30E	23.30N	0	0	0	0	0.0	0.0	
2009/8/17	6.1	20	123.50E	23.36N	0	0	0	0	0.0	0.0	
2009/10/3	6.2	15	121.59E	23.66N	0	0	0	0	0.0	0.0	花蓮豐濱外海10公里
2009/12/19	6.8	46	121.75E	23.78N	>0	6	0	0	0	3.8	花蓮壽豐外海18公里
2010/2/7	6.2	15	123.09E	23.35N	0	0	0	0	0.0	0.0	
2010/3/4	6.4	<u>5</u>	120.73E	23.00N	25	40	0	1	2.8	2.6	高雄縣桃源鄉
2010/4/26	6.5	20	123.33E	22.52N	0	0	0	0	0.0	0.0	
2010/10/4	6.8	60	125.30E	23.75N	0	0	0	0	0.0	0.0	

Probabilistic Seismic Risk Assessment

Schematic Diagram of PSRA

Analysis Hazard Seismic **Probabilistic**

Area Source
Active Faults

Scenario Builder Source Parameters of Seismic Event

Seismic

Disaster

Simulation

Technology

Probabilistic Seismic Source model

Occurrence Rate of Each Scenario Event

Hazard Analysis

Damage Assessment

Loss Estimation

Seismic Event Loss Table

Risk Assessment and Financial Analysis

Seismic Event Loss Table

- Summarize event specific information
- Used for calculation of statistics

ID	Source Parameters	ν	r oi	σ	X
1	$\mathbf{M}_1, \mathbf{E}_1, \mathbf{N}_1, \mathbf{d}_1, \mathbf{l}_1, \mathbf{\theta}_2$	ν ₁ _	L_1	σ_1	X ₁
2	$M_1, E_1, N_1, d_1, l_1, \frac{5}{8}$	v ₂	L ₂ · is	σ_2 skip	X ₂ page
•••	scen	Irce	: ster	y an	data
j	$M_j, E_j, N_j, d_j, l_j,$	v _j	L _j	$\sigma_{\rm j}$	X _j
•••	disci	smic	: mic	cert	rent
J	$M_J, E_J, N_J, d_J, l_J, \theta_J$	ν _J	r ¹ Seis	$\sigma_{ m J}$	X _J . <u>į</u>
-	magnitude, epicenter location, focal depth, rupture length, angle	annual occurrence rates	expected losses	uncertainty, standard deviations	total exposures

Average Annual Loss (AAL) & Its Standard Deviation (STD)

Seismic source models

$$AAL = \sum_{i=1}^{N} (L_i \cdot \nu_i)$$

$$STD = \sqrt{\sum_{i=1}^{N} \left[(L_i^2 + \sigma_i^2) \cdot \nu_i \right]}$$

Seismic scenario simulation

 L_i = expected loss due to scenario earthquake j

 σ_i = standard deviation of loss due to scenario earthquake j

 v_j = annual occurrence rate of scenario earthquake j

Prioritization of Seismic Retrofit of Highway Bridges

\blacksquare Risk indicator I_r

• AAL before retrofit L_c , remaining years before retrofit N_c , rebuild cost C_b

$$0 \le I_r = \frac{L_c \cdot N_c}{C_b} \le 1$$

4 Beneficial indicator I_e

• AAL before and after retrofit: L_c , L_r ; retrofit cost: C_r ; remaining years after retrofit: N_r

$$0 \le I_e = \frac{L_c - L_r - (C_r / N_r)}{L_c} \le 1$$

- **4** Importance indicator
- **♣** Preliminary investigation score

Example of Insurance Pricing

- **4** Premium = $(AAL + \alpha \times STD + Fixed Expenses) / (1 Variable Expense Factor)$
 - The variable expenses for excess of loss are typically assumed to be around 10% for brokerage and 3% for taxes

Future Vision

Current Status of TELES

- Collect various kinds of database including geological condition and exposures to be used in SDST and PSRA
- Propose various kinds of analysis models in SDST
- **4** Balance data quality and model complexity
- **4** Develop ESLE to be used in emergency response
- **4** Corporate with CWB and CGS to propose reliable probabilistic seismic source model
- **Apply PSRA** in insurance pricing and prioritization of seismic retrofit of public facilities

Family of TELES-related Applications

Future Vision of TELES

4 Promote ease of use

- Develop customized user-interface for different purpose applications
- Each sub-system has the same software architecture, shares the common library and data management framework
- Each sub-system has its own inventory data but also shares some common geologic and hazard database
- **Each sub-system run independently. However, they may communicate with each other when various kinds of data are put in the same project folder**
- Each sub-system may be maintained by the experts in the field

4 Collect and update database

- Improve precision and content of inventory database, such as address-to-coordinates database and geo-coding algorithm
- **Integrate with National Geographical Information System (NGIS), which is supervised by the Council for Economic Planning and Development and the Ministry of Interior**
- **4** Corporate with academia, industry and government to develop analysis models for disaster scenario simulation and risk assessment
 - Emphasize the evaluation of post-quake performance of the whole system, such as network analysis of potable water system under a scenario event
 - Beside seismic hazards and structural vulnerability, emphasize the assessment of social impacts and economic losses, such as casualty, repair cost, restoration time, material and man-power, etc

Development of Web-sites for

Seismic Disaster Prevention and Response

- **4** Taiwan Seismic Scenario Database (TSSD) Website
 - Query and display scenario database established by TELES
 - Query exposure statistics in disastrous region under the selected event and other non-scenario basic information
 - http://teles.ncree.org.tw/tssd
- **4** Taiwan Early Seismic Loss Estimation (TESLE) Website
 - Query and display ESLE results soon after $M \ge 5$ earthquakes
 - Assist in disaster analysis due to the newly occurred event
 - http://teles.ncree.org.tw/tesle
- **Learthquake Disaster Information Upload System (EDIUS)**Website
 - Compile investigation by professionals and information from general public to build up the disaster database
 - Query disasters and provide statistical analysis of historical earthquakes
 - http://teles.ncree.org.tw/eqsurvey

Thank You for Attention