# New Seismic Activity Model of Large Earthquakes along Nankai Trough for Probabilistic Seismic Hazard Maps

## Toshihiko Okumura (Shimizu Corp.) Hiroyuki Fujiwara (NIED)



#### Plate Tectonics around Japan



after Japan Coast Guard



### Source Area of Damaging Earthquakes



Earthquake Research Committee (1999):Seismic Activity in Japan



### Earthquakes in and around Japan



Earthquake Research Committee (1999):Seismic Activity in Japan

# Large Earthquakes along Nankai Trough



- Large earthquakes  $(M \ge 8)$  have occurred repeatedly with recurrence interval 90–150 yrs
- One huge earthquake or two successive earthquakes with interval of 1day to 3yrs
- Source area often reaches to Tokai area
- Tokai area has never caused earthquake independently

Interval: 90–150 years (Average=117yrs)



# Affected Area of Nankai Trough EQs





# Long-Term Evaluation (2001)

Evaluation of occurrence potentials for Nankai and Tonankai earthquakes



Earthquake Research Committee, Headquarters for Earthquake Research Promotion (2001) Time predictable mode:

Nankai Earthquake

- •M≒8.4
- Tr=90.1yrs
- P<sub>30</sub>≒60% (2012)
- Tonankai Earthquake
- M≒8.1
- Tr=86.4yrs
- P<sub>30</sub>≒70-80% (2012)

Nankai + Tonankai • M≒8.5

• P<sub>30</sub> : not evaluated

Tokai Earthquake *not evaluated* 



# Addition to Long-Term Evaluation 2001

In order to perform probabilistic seismic hazard analysis, the followings were assumed:

### Evaluation of Tokai area

- Average recurrence interval: 118.8 yrs (renewal process)
- Elapsed time from the latest event: 157.0 yrs (1854)
- $\Rightarrow$  P<sub>30</sub>=88% (as of Jan. 2012) • M=8.0



# Addition to Long-Term Evaluation 2001

In order to perform probabilistic seismic hazard analysis, the followings were assumed:

- Probability that adjoining areas slip simultaneously to generate larger earthquakes
  - When both of adjoining two areas cause earthquakes within 30 years, probability that they cause one large earthquake is 1/2.



# **Model for Hazard Assessment**



two or more areas slip simultaneously



### Seismic Hazard Map 2012

Prob. that JMA seismic intensity is 6-Lower or greater in 30 years from 2012





# **Problems in Old Model**

- 1. Three areas, Nankai, Toankai and Tokai are evaluated independently
  - large probability assigned to *odd* occurrence patterns
- 2. Possibility of occurrence of larger earthquakes is eliminated
  - need to incorporate lessens learned from Tohoku earthquake of 2011
  - evidence of large tsunami of 2000 years ago has been found recently



# Revised Long-term Evaluation (May, 2013)

Earthquake Research Committee has published revised version of long-term evaluation of Nankai trough earthquakes

- 1. Possibility of larger earthquakes (up to M=9.1)
  - potential source area is expanded
- 2. Evaluation of earthquake (s) along whole the Nankai trough, not for individual areas
  - $P_{30}$ =66.5%  $\Leftrightarrow$  Nankai:62%, Tonankai:72%, Tokai:88%
- 3. Diversity of future earthquakes
  - probability of occurrence of individual case is not shown



# Source Area of Maximum Earthquake

Source area is expanded to west (Hyuga area), south (shallow tsunami generating zone: 0-10km) and north (deep zone: 25-35km)





### Variation of Earthquakes

|        | 3005.5-    |   |   | スケーリング則から |   |           |   |          |
|--------|------------|---|---|-----------|---|-----------|---|----------|
|        | の新         | Z | Α | В         | C | D         | E | 推定されるMw  |
|        | 浅部         |   |   |           |   |           |   |          |
|        | 中部         |   |   |           |   |           |   | 8.8      |
|        | 深部         |   |   |           |   |           |   |          |
|        |            |   |   |           |   |           |   |          |
|        | 浅部         |   |   |           |   |           |   |          |
|        | 中部         |   |   |           |   |           |   | 9.0*1    |
|        | 深部         |   |   |           |   |           |   |          |
|        | site day   |   |   |           |   |           |   |          |
|        | <b>浅</b> 部 |   | + |           |   |           |   |          |
|        | <u> 中部</u> |   |   |           |   |           |   | 9.0      |
|        | 徕部         | _ |   |           |   | I         | 1 |          |
|        | Sis der    |   | 1 | 1         | 1 |           |   |          |
|        | (大部)       |   | + |           |   |           |   | 0.1*2    |
|        | 竹印         |   |   |           |   |           |   | 9.1      |
|        | (木印)       |   |   |           |   |           |   |          |
|        | ्रोहे केल  | _ | 1 |           |   | · · · · · |   |          |
|        | (文明)       | _ |   |           |   |           |   | 97       |
|        | アロ         |   |   |           |   |           |   | 0.7      |
|        | PICHP      |   |   |           |   |           |   |          |
| 東海・南海地 | 浅部         |   |   |           |   |           |   |          |
| 域が運動する | 中部         |   |   |           |   |           |   | 8.9      |
| パターン   | 深部         |   |   |           |   |           |   |          |
|        | FIERE      |   |   |           |   | ·         | · |          |
|        | 浅部         |   |   |           |   |           |   | 8.8      |
|        | 中部         |   |   |           |   |           |   |          |
|        | 深部         |   |   |           |   |           |   |          |
|        |            |   |   |           |   |           |   |          |
|        | 浅部         |   |   |           |   |           |   |          |
|        | 中部         |   |   |           |   |           |   | 9.0      |
|        | 深部         |   |   |           |   |           |   |          |
|        |            |   |   |           |   |           |   |          |
|        | 浅部         |   |   |           |   |           |   | 8.7      |
|        | 中部         |   |   |           |   |           |   |          |
|        | 深部         |   |   |           |   |           |   |          |
|        | ala dan    | _ |   |           |   |           |   |          |
|        | 浅部         |   |   |           |   |           |   |          |
|        | 中部         |   |   |           |   |           |   | 8.9      |
|        | 深部         | + |   | l         |   |           | 1 |          |
|        | Nils dare  | + | - | i         |   | 1         |   | <u> </u> |
|        | <u>浅部</u>  |   |   |           |   |           |   |          |
|        | 甲的         |   | + |           |   |           |   | 8.4      |
|        | 深部         |   |   |           |   |           |   |          |

|                                             | 深さ |   | スケーリング則から |   |   |   |   |          |  |  |  |
|---------------------------------------------|----|---|-----------|---|---|---|---|----------|--|--|--|
|                                             |    | Z | Α         | В | C | D | E | 推定されるMw  |  |  |  |
| 東海・南海地<br>域の2地震が<br>時間差をおい<br>て発生するパ<br>ターン | 浅部 |   |           |   |   |   |   |          |  |  |  |
|                                             | 中部 |   |           |   |   |   |   | 8.7, 8.3 |  |  |  |
|                                             | 深部 |   |           |   |   |   |   |          |  |  |  |
|                                             |    |   |           |   |   |   |   |          |  |  |  |
|                                             | 浅部 |   |           |   |   |   |   |          |  |  |  |
|                                             | 中部 |   |           |   |   |   |   | 8.5, 8.3 |  |  |  |
|                                             | 深部 |   |           |   |   |   |   |          |  |  |  |
|                                             |    |   |           |   |   |   |   |          |  |  |  |
|                                             | 浅部 |   |           |   |   |   |   | 8.7, 8.2 |  |  |  |
|                                             | 中部 |   |           |   |   |   |   |          |  |  |  |
|                                             | 深部 |   |           |   |   |   |   |          |  |  |  |
|                                             |    |   |           |   |   |   |   |          |  |  |  |
|                                             | 浅部 |   | L         |   |   |   |   | 8.5, 8.2 |  |  |  |
|                                             | 中部 |   |           |   |   |   |   |          |  |  |  |
|                                             | 深部 |   |           |   |   |   |   |          |  |  |  |



# Variation of Earthquakes



Assumptions to make a model:

- Prob. of 1EQ or 2EQs is even
- Nankai and Tonankai always slip
- when 2 EQs occur, source zone is divided between Nankai and Tonankai
- Prob. that source area reaches Tokai is 0.75
- Prob. of maximum EQ (Hyuga to Tokai) is 0.05



# Variation of Earthquakes

tentative



Depth S: 0-10km, M: 10-25km, D: 25-35km



#### Source Area of Earthquakes

#### One Large Earthquake





#### **Source Area of Earthquakes**





#### Difference (2013 model-2012 model)

Prob. that JMA seismic intensity is 6-Lower or greater in 30 years



Α

extended source area to Hyuga

#### В

Probability of Nankai area
 62% → 66.5%

#### С

Probability of Tonankai & Tokai Tonankai: 72% → 66.5% Tokai: 88% → 66.5%

#### D

 larger earthquake (Tokai was 8.0 in old model)



#### **Seismic Hazard Curves**





# Summary

- 1. Seismic activity models for earthquakes along Nankai Trough are presented
  - Old model based on Long-term evaluation 2001
  - New model based on Long-term evaluation 2013
- 2. Major points of model revision are expressed
  - Consideration of Up to M9.1 earthquake
  - Evaluation of occurrence probability of whole area, not for individual area
  - Variation of earthquakes
- 3. Seismic hazard maps based on both models are compared

