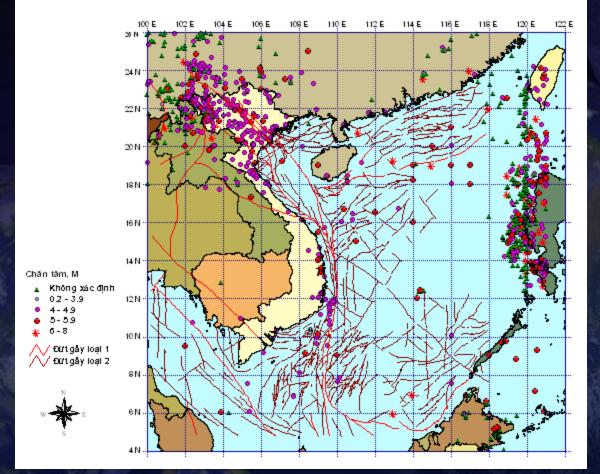
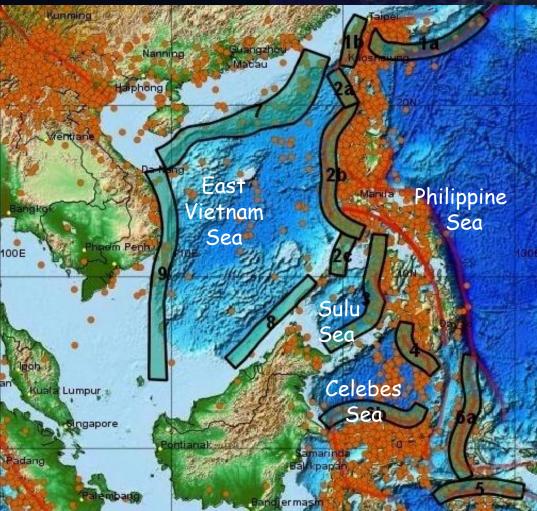

SIMULATION OF A WORST CASE TSUNAMI SCENARIO FROM THE MANILA TRENCH TO VIETNAM


Nguyen Hong Phuong, Vu Ha Phuong, Pham The Truyen Earthquake Information and Tsunami Warning Centre Institute of Geophysics, VAST

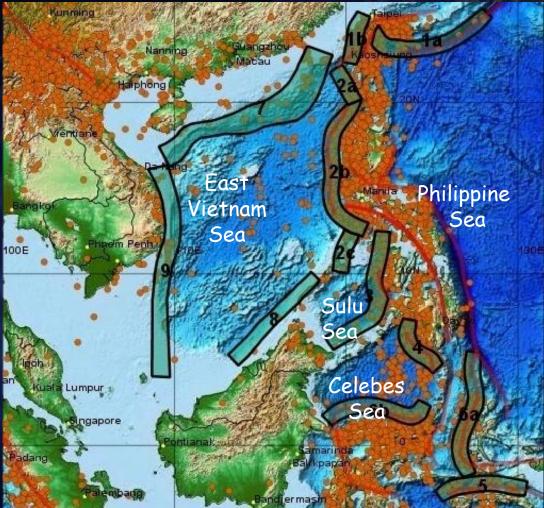
OUTLINE

- Earthquake -Tsunami Hazards in Vietnam
- Source modeling
 Simulation results
 Applications
 Conclusions

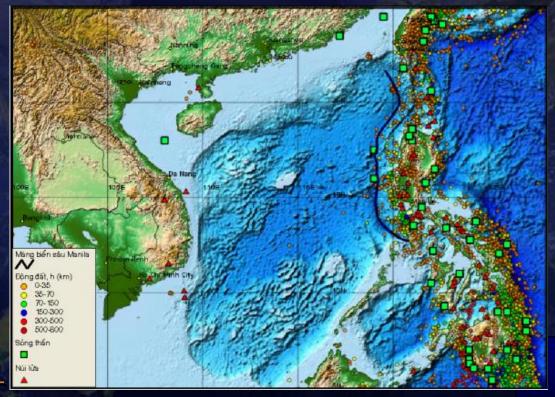
•The largest earthquakes in country: 3 -1 historical (in the 14th century) - 2 recorded: -Dien Bien 1935 (M=6.7) and Tuan Giao 1983 (M=6.8) Offshore volcanic earthquake 1923 (M=6.1). • No records of historical tsunamis, no official data on damage and casualties


Seismotectonic map of Vietnam and adjacent sea areas

Due to its location, the Vietnamese coast can hardly be affected by destructive tsunamis, originated in the central Pacific Ocean, from the sea of Japan and East China sea in northeast side and even from the mega subduction zones as the Sundaland and the Philippines.

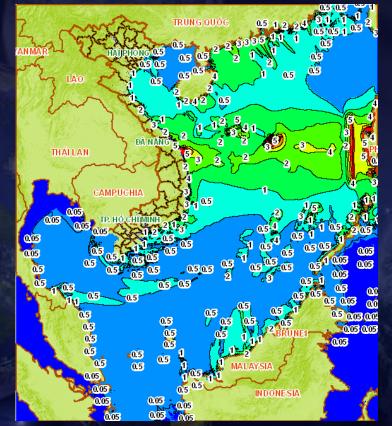


However, the tsunami threats might come from inside the East Vietnam sea.

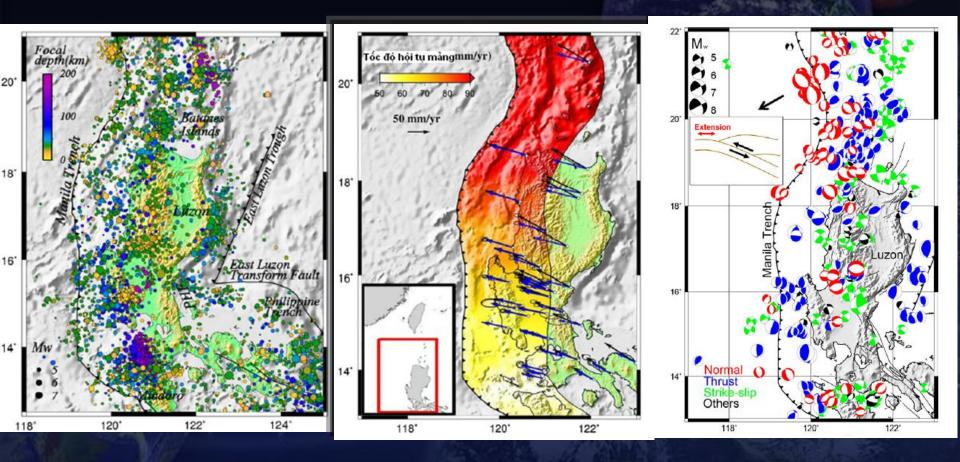


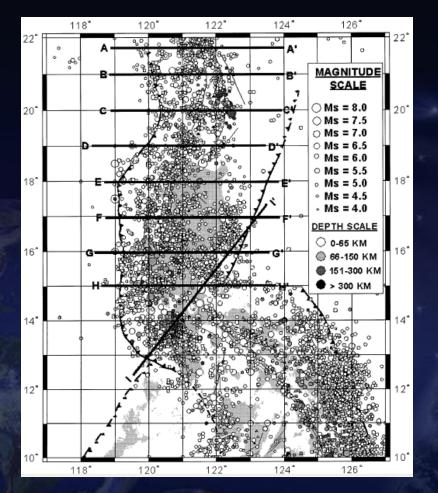
Based on the analysis of tectonic feature and geodynamic characteristics of regional faults systems in the South East Asia, 9 source zones capable of generating tsunamis affecting Vietnamese coast were delineated in the South China Sea and adjacent sea areas.

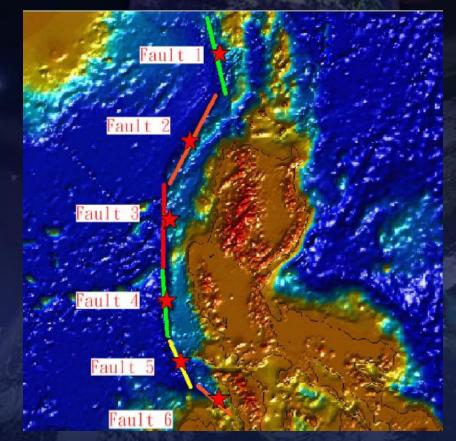
Among the tsunami source zones defined, the Manila Trench source, west of the Philippines is considered as the most dangerous for the Vietnamese coast. The recent research results show that the maximum expected earthquake magnitude for the Manila Trench source zone may reach to the value of Mw = 8.7, and it takes approximately 2 hours for a tsunami from this source zone to hit the Vietnamese coast


at the earliest.

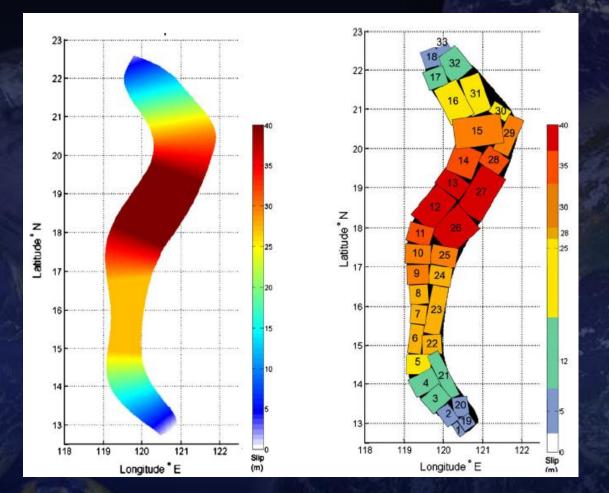
Nguyễn Hồng Phương Institute of Geophysics


- Vu Thanh Ca et al (2008) calculated 25 tsunami scenarios generated in the South China sea in order to investigate the impact to the Vietnamese coasts.
- The MOST model and a two segment source model were used for simulation.


- In this study, we create a worst-case scenario of tsunami earthquake excited by Manila Trench megathrust and assess the impact to the Vietnamese coast.
- The Manila Trend source is modified on the basis of published updated data and reasearch results in the region.



After Hsu et al (2012).



After Bautista et al (2001)

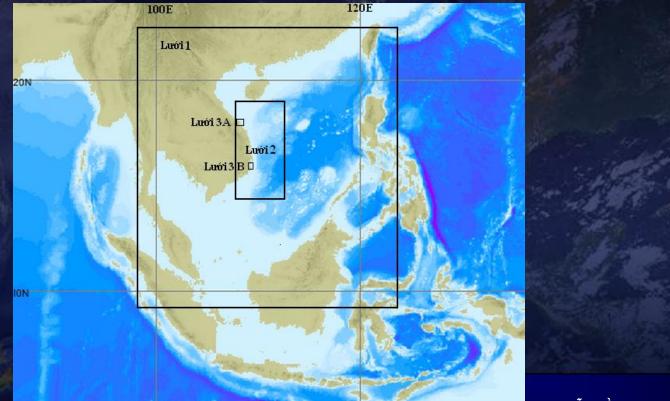
After Tso-Ren Wu et al (2009)

After Kusnowidjaja Megawati et al (2009)

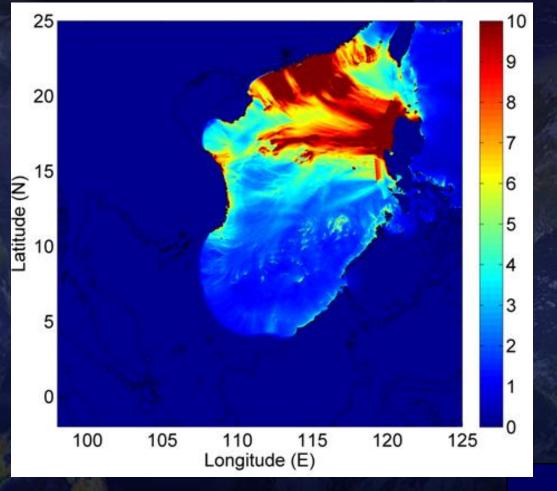
The Manila Trench worst case scenario's source model was created assuming a 6-segments fault zone which is capable for a M_w 9.3 tsunami generating earthquake. Parameters of each segment is listed bellow.


Seg.	Long.	Lat.	Length (km)	Width (km)	Dislocation (m)	Depth (km)	Strike (deg.)	Dip (deg.)	Rake (deg.)
1	120.5	20.2	190	120	25	30	354	10	90
2	119.8	18.7	250	160	40	30	22	20	90
3	119.3	17.0	220	160	40	30	2	28	90
4	119.2	15.1	170	90	28	30	356	20	90
5	119.6	13.7	140	110	12	30	344	22	90
6	120.5	12.9	95	80	5	30	331	26	90

SIMULATION

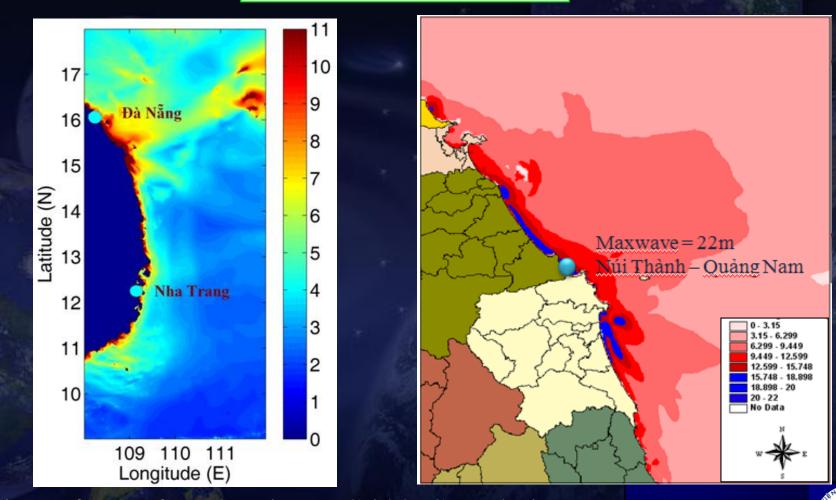

The numerical approach is applied to this study. The well validated open source code, COMCOT (Cornell Multi-grid Coupled Tsunami Model), is chosen to perform the simulation.

The COMCOT model is capable of solving both linear and nonlinear shallow water equations in the spherical and Cartesian coordinate systems. The nested grid system can provide tsunami simulations in both deep-water and near-shore coastal regions. The COMCOT model also provides the moving boundary algorithm to simulate the tsunami inundation (Philip L. –F. Liu et al, 1998).


SIMULATION

To estimate the maximum wave heights at different places along the Vietnamese coast, four grid layers are adopted and referred as Grids 1, 2, 3A, and 3B. Finer grid layers, Grids 3A and 3B, are placed in the areas of the two coastal cities Da Nang and Nha Trang, respectively.

Hazards Assessment


Maximum free-surface elevation on Grid 1

Nguyễn Hồng Phương Institute of Geophysics

17 - 19 JUNE, 2013

Hazards Assessment

Maximum free-surface elevation on Grid 2 (Central Vietnam coast) Suyen Hong Phuong

17 – 19 JUNE, 2013

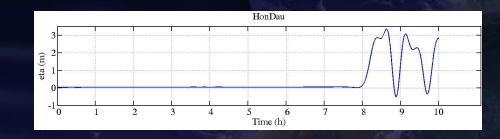
Institute of Geophysics

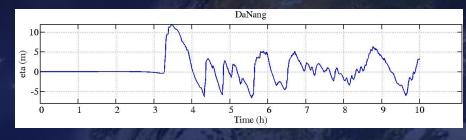
Hazards Assessment

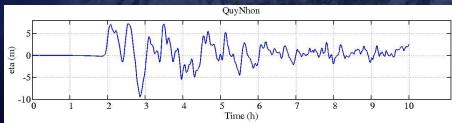
Wave heights maps calculated for Da Nang city (left) and Nha Trang city (right)

Hazards Assessment

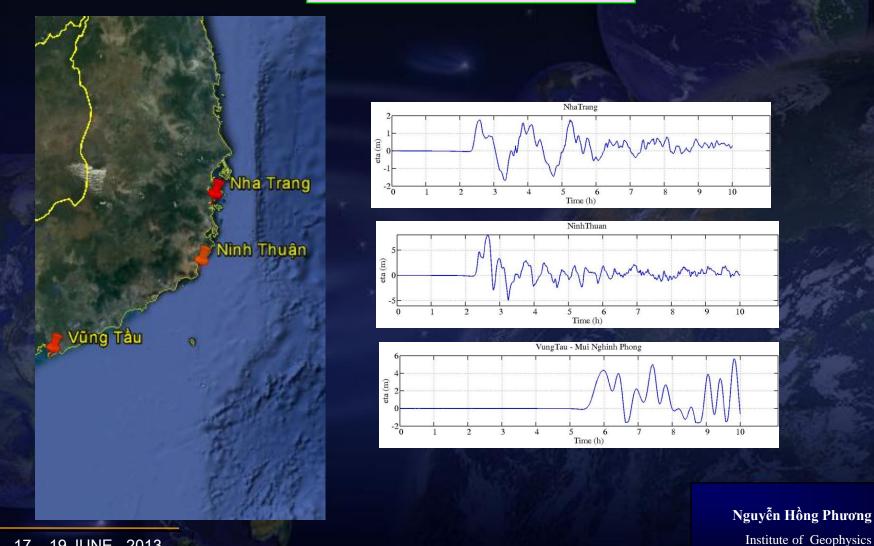
Sea level station	Long	Lat
Hòn Dáu_Hải Phòng	106.818300	20.665300
Giao Thủy_Nam Định	106.559000	20.158600
Cửa Lò – Nghệ An	105.756000	18.824500
Đồng Hới – Quảng Bình	106.668000	17.479900
Đà Nẵng	108.250000	16.075000
Hội An	108.432000	15.877900
Núi Thành – Quảng Nam	108.800000	15.488600
Nghĩa An – Quảng Ngãi	108.920000	15.118900
Quy Nhơn 2	109.303000	13.774900
Tuy Hòa	109.379000	13.083200
Nha Trang	109.198500	12.239400
Ninh Thuận	109.027000	11.410000
Vũng Tầu	107.083800	10.319700
(Mũi Nghinh Phong)		
Cà Mau	104.850000	8.545000


Location of the sea level stations along the coast




17 - 19 JUNE, 2013

Hazards Assessment



Nguyễn Hồng Phương Institute of Geophysics

Hazards Assessment

Database Development

A field trip was organized to collect data on built-environment and population in Nha Trang city.

PHIÉU ĐIỂU TRA , KHẢO SÁT TRONG KHUÔN KHỔ ĐỂ TÀI "ĐÁNH GIÁ RỦI RO ĐÔNG ĐẤT CHO TP NHA TRANG" Ngày điều tra: Điều tra viên: Tên công trình hoặc cum công trình : Mã bản đồ GIS: Mã khu vực: Địa chỉ (Ghi rõ số nhà, phố, phường, quận hoặc tố, xã, huyện...): A. ĐẠC ĐIỆM CHUNG 1. Chủ đầu tư : 2. Chủ sử dụng : Mục đích sử dụng và số lượng người sử dụng trong ngày (Đánh dâu x cho loại phù hợp và ước lương số người từ nhỏ nhất đến lớn nhất) - Nhà ở Sô người từ đên ... - Thương mai Sô người từ đến Nhà ở và thương mai Sô người từ đến Văn phòng Sô người từ đên ... Sô người từ đến -Sản xuất Sô người từ đến Trường học, hội trường Sô người từ đến Công trình quốc gia Dich vu khân cập Sô người từ đên . Sô người từ đến CT lich sử văn hóa Muc đích khác Sô người từ ... 4. Thời kỳ xây dưng công trình : Truớc 1960 Từ 1960 – 1975 – Sau 1990 Từ 1975 - 1990 5. Mức đô thiết kế kháng chân Không Múc độ yêu Mức độ trung bình Múc đô cao B. QUI MÖ CÖNG TRÍNH: Sô tâng : Chiêu cao tâng (m) : 2. Mặt bằng công trình : Có bản về hoặc phác thảo kích thước chính Diên tích xây dựng (m²) Diên tích chiêm đất (m²) 5. Tổng điện tích công trình (m2) C. KẾT CẦU CÔNG TRÌNH : (Đánh dâu x vào loại phù hợp) Nên móng : - Móng gach, đá Móng BTCT - Coc BTCT Coc khoan nhôi

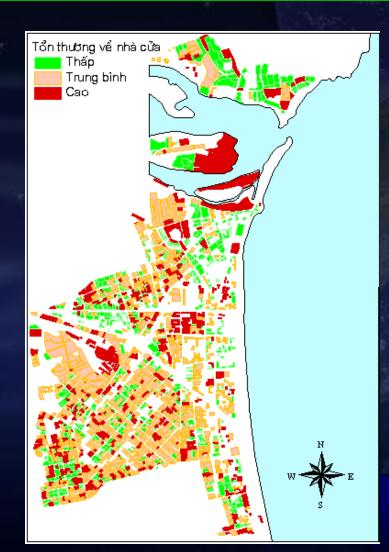
Phiấu điều tra số:

Database Development

Head-up digitizing the building layer of the Nha Trang city using Google Earth

Database Development

Create a GIS building inventory database for the study area

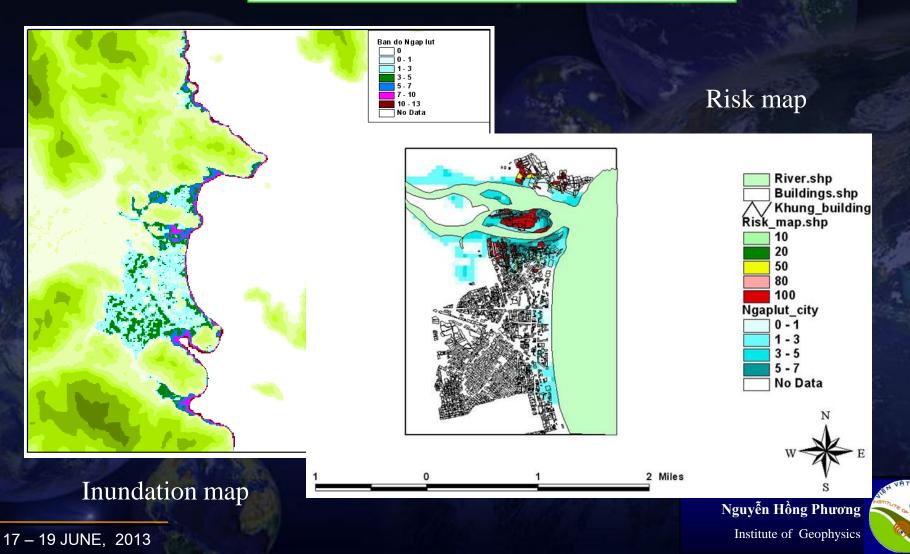

	6	🎗 Tîm klếm dũ	r liệu						
🔍 Cơ sở dữ liệu khảo sát nhà cửa TP.Nha Trang 🛛 🛛		Tìm kiếm theo:— Quận/huyện Phường/ xã	V03			n đồ GIS nu vực			
		Tổng Số bản ghi: 874							
Cở sở dữ liệu nhà cửa			Mã bản đồ	Mã khu vực	Tên phố	Phường/Xã	Quận/Huyện	Mục đích sử dụng	
Co so du liệu nhà của			Sau 1990	Không	3	V03	109	36 Ngô Đức Kế	-
			Sau 1990	Không		V03	110	48 Lê Đại Hành	
			Sau 1990	Không	1	V03	111	50 Lê Đại Hành	
Tìm kiếm Đữ liệu			Sau 1990	Không	3	V03	113	56 Lê Đại Hành	
			1975 - 1990	Không	1	V03	116	58 Lê Đại Hành	
		14/12/2009	Sau 1990	Không	4	V03	53	40 Trịnh Phong	
Kết thúc		14/12/2009	Sau 1990	Không	2	V03	114	71 Lê Đại hành	
		14/12/2009	Sau 1990	Không		V03	115	77 Lê Đại hành	
		14/12/2009	Sau 1990	Không	3	V03	68	13 Trịnh Phong	
		14/12/2009	1975 - 1990	Không	1	V03	69	11 Trịnh Phong	
		14/12/2009	1975 - 1990	Không		V03	70	46 Mạc Đĩnh Chi	
		14/12/2009	1975 - 1990	Không		V03	72	6 Trịnh Phong	
		14/12/2009	Sau 1990	Không	2	V03	74	5 Trịnh Phong	
		14/12/2009	1975 - 1990	Không	2	V03	76	135 Nguyễn Trãi	
		•			•				Ŀ
		Số bản ghi: 0			Tìm k	iếm Res	tart Kết xu	uất Kết thúc	J
		Martine 1			Sec.				VE

IGP

Vulnerability and Risk Assessment

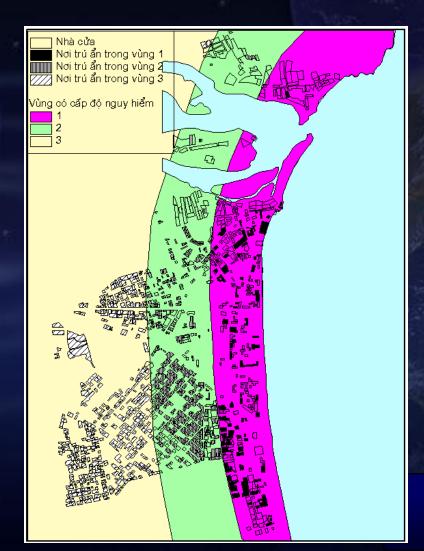
Built Environment vulnerability map of Nha Trang city

Vulnerability and Risk Assessment



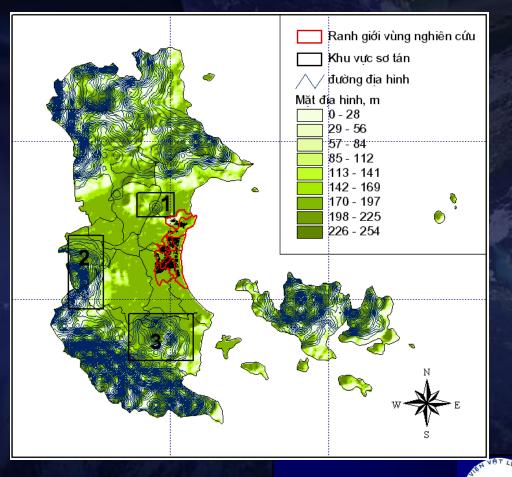
Population vulnerability map of Nha Trang:

during day time and night time



Vulnerability and Risk Assessment

Response and evacuation Planning


Tsunami shelters map for Nha Trang city

Response and evacuation Planning

Map of tsunami evacuation zones

Response and evacuation Planning

17 - 19 JUNE, 2013

CONCLUSIONS

In this study, we create a worst-case scenario of tsunami earthquake excited by Manila Trench mega-thrust and assess the impact to the Vietnamese coast. The source parameters are defined based on the models proposed by Tso-Ren Wu et al (2009) and Megawati K. et al (2009). The earthquake magnitude, Mw, is assumed to be 9.3 generated on the Manila Trench. The tsunami propagation and inundation were numerically computed by using the COMCOT open source code.

We focus the discussion in Central Vietnam coastal regions, and carefully describe the maximum tsunami wave heights around two coastal cities, Da Nang and Nha Trang. In Central Vietnam coast, the maximum tsunami wave high of 22 m is observed at the coast of Quang Ngai province. The maximum wave height is 14 m recorded at the coast of Da Nang city and is 12 m at the coast of Nha Trang city. It might be concluded that the tsunami hazards from Manila Trench source are devastating to Vietnamese coast, especially to the Central Vietnam coast.

The simulation results can be used for the tsunami hazards/risk assessment as well as warning and response purposes for the coastal zones of the

coutry.

Nguyễn Hồng Phương Institute of Geophysics

SIMULATION OF A WORST CASE TSUNAMI SCENARIO FROM THE MANILA TRENCH TO VIETNAM

Nguyen Hong Phuong, Vu Ha Phuong, Pham The Truyen Earthquake Information and Tsunami Warning Centre Institute of Geophysics, VAST

THANK YOU !

